These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 35259472)

  • 1. A review of microplastic impacts on seagrasses, epiphytes, and associated sediment communities.
    Gerstenbacher CM; Finzi AC; Rotjan RD; Novak AB
    Environ Pollut; 2022 Jun; 303():119108. PubMed ID: 35259472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of seagrass meadows in the accumulation of microplastics: Insights from a South African estuary.
    Boshoff BJ; Robinson TB; von der Heyden S
    Mar Pollut Bull; 2023 Jan; 186():114403. PubMed ID: 36462418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early evidence of the impacts of microplastic and nanoplastic pollution on the growth and physiology of the seagrass Cymodocea nodosa.
    Menicagli V; Castiglione MR; Balestri E; Giorgetti L; Bottega S; Sorce C; Spanò C; Lardicci C
    Sci Total Environ; 2022 Sep; 838(Pt 3):156514. PubMed ID: 35679937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microplastic accumulation in a Zostera marina L. bed at Deerness Sound, Orkney, Scotland.
    Jones KL; Hartl MGJ; Bell MC; Capper A
    Mar Pollut Bull; 2020 Mar; 152():110883. PubMed ID: 31957685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microplastic retention by marine vegetated canopies: Simulations with seagrass meadows in a hydraulic flume.
    de Los Santos CB; Krång AS; Infantes E
    Environ Pollut; 2021 Jan; 269():116050. PubMed ID: 33272801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thalassia testudinum as a potential vector for incorporating microplastics into benthic marine food webs.
    Goss H; Jaskiel J; Rotjan R
    Mar Pollut Bull; 2018 Oct; 135():1085-1089. PubMed ID: 30301005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New Insights into the Microplastic Enrichment in the Blue Carbon Ecosystem: Evidence from Seagrass Meadows and Mangrove Forests in Coastal South China Sea.
    Huang Y; Xiao X; Effiong K; Xu C; Su Z; Hu J; Jiao S; Holmer M
    Environ Sci Technol; 2021 Apr; 55(8):4804-4812. PubMed ID: 33703883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role epiphytes play in particle capture of seagrass canopies.
    Barcelona A; Colomer J; Serra T; Cossa D; Infantes E
    Mar Environ Res; 2023 Nov; 192():106238. PubMed ID: 37883828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epiphyte loads on seagrasses and microphytobenthos abundance are not reliable indicators of nutrient availability in oligotrophic coastal ecosystems.
    Fourqurean JW; Muth MF; Boyer JN
    Mar Pollut Bull; 2010 Jul; 60(7):971-83. PubMed ID: 20381091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review of nitrogen and phosphorus metabolism in seagrasses.
    Touchette BW; Burkholder JM
    J Exp Mar Biol Ecol; 2000 Jul; 250(1-2):133-167. PubMed ID: 10969167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Species-specific plastic accumulation in the sediment and canopy of coastal vegetated habitats.
    Cozzolino L; Nicastro KR; Zardi GI; de Los Santos CB
    Sci Total Environ; 2020 Jun; 723():138018. PubMed ID: 32213414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eelgrass (Zostera marina) and its epiphytic bacteria facilitate the sinking of microplastics in the seawater.
    Zhao L; Ru S; He J; Zhang Z; Song X; Wang D; Li X; Wang J
    Environ Pollut; 2022 Jan; 292(Pt A):118337. PubMed ID: 34644624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microplastics in freshwater ecosystems: a recent review of occurrence, analysis, potential impacts, and research needs.
    Sarijan S; Azman S; Said MIM; Jamal MH
    Environ Sci Pollut Res Int; 2021 Jan; 28(2):1341-1356. PubMed ID: 33079353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Microbial Community Structure on Microplastic Surface in the
    Liu SL; Jian MF; Zou L; Hu QW
    Huan Jing Ke Xue; 2022 Mar; 43(3):1447-1454. PubMed ID: 35258208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The plastic Trojan horse: Biofilms increase microplastic uptake in marine filter feeders impacting microbial transfer and organism health.
    Fabra M; Williams L; Watts JEM; Hale MS; Couceiro F; Preston J
    Sci Total Environ; 2021 Nov; 797():149217. PubMed ID: 34303969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seagrass-mediated rhizosphere redox gradients are linked with ammonium accumulation driven by diazotrophs.
    Brodersen KE; Mosshammer M; Bittner MJ; Hallstrøm S; Santner J; Riemann L; Kühl M
    Microbiol Spectr; 2024 Apr; 12(4):e0333523. PubMed ID: 38426746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trapping of microplastics and other anthropogenic particles in seagrass beds: Ubiquity across a vertical and horizontal sampling gradient.
    Ledet J; Tan C; Guan XH; Yong CLX; Ying L; Todd P
    Mar Environ Res; 2024 May; 197():106487. PubMed ID: 38583358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microplastics in terrestrial ecosystems: Moving beyond the state of the art to minimize the risk of ecological surprise.
    Baho DL; Bundschuh M; Futter MN
    Glob Chang Biol; 2021 Sep; 27(17):3969-3986. PubMed ID: 34042229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Second Skin of Seagrass Leaves: A Comparison of Microalgae Epiphytic Communities Between Two Different Species Across Two Seagrass Meadows in Lesser Sunda Islands.
    Atmaja PSP; Bengen DG; Madduppa HH
    Trop Life Sci Res; 2021 Jun; 32(2):97-119. PubMed ID: 34367517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow and epiphyte growth effects on the thermal, optical and chemical microenvironment in the leaf phyllosphere of seagrass (
    Noisette F; Depetris A; Kühl M; Brodersen KE
    J R Soc Interface; 2020 Oct; 17(171):20200485. PubMed ID: 33050780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.