These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
304 related articles for article (PubMed ID: 35259479)
1. Cell cycle checkpoints and beyond: Exploiting the ATR/CHK1/WEE1 pathway for the treatment of PARP inhibitor-resistant cancer. Gupta N; Huang TT; Horibata S; Lee JM Pharmacol Res; 2022 Apr; 178():106162. PubMed ID: 35259479 [TBL] [Abstract][Full Text] [Related]
2. Restored replication fork stabilization, a mechanism of PARP inhibitor resistance, can be overcome by cell cycle checkpoint inhibition. Haynes B; Murai J; Lee JM Cancer Treat Rev; 2018 Dec; 71():1-7. PubMed ID: 30269007 [TBL] [Abstract][Full Text] [Related]
3. ATR, CHK1 and WEE1 inhibitors cause homologous recombination repair deficiency to induce synthetic lethality with PARP inhibitors. Smith HL; Willmore E; Prendergast L; Curtin NJ Br J Cancer; 2024 Sep; 131(5):905-917. PubMed ID: 38965423 [TBL] [Abstract][Full Text] [Related]
4. Identification of a Molecularly-Defined Subset of Breast and Ovarian Cancer Models that Respond to WEE1 or ATR Inhibition, Overcoming PARP Inhibitor Resistance. Serra V; Wang AT; Castroviejo-Bermejo M; Polanska UM; Palafox M; Herencia-Ropero A; Jones GN; Lai Z; Armenia J; Michopoulos F; Llop-Guevara A; Brough R; Gulati A; Pettitt SJ; Bulusu KC; Nikkilä J; Wilson Z; Hughes A; Wijnhoven PWG; Ahmed A; Bruna A; Gris-Oliver A; Guzman M; Rodríguez O; Grueso J; Arribas J; Cortés J; Saura C; Lau A; Critchlow S; Dougherty B; Caldas C; Mills GB; Barrett JC; Forment JV; Cadogan E; Lord CJ; Cruz C; Balmaña J; O'Connor MJ Clin Cancer Res; 2022 Oct; 28(20):4536-4550. PubMed ID: 35921524 [TBL] [Abstract][Full Text] [Related]
5. Exploiting replicative stress in gynecological cancers as a therapeutic strategy. Ngoi NY; Sundararajan V; Tan DS Int J Gynecol Cancer; 2020 Aug; 30(8):1224-1238. PubMed ID: 32571890 [TBL] [Abstract][Full Text] [Related]
6. PARP inhibitor resistance in ovarian cancer: Underlying mechanisms and therapeutic approaches targeting the ATR/CHK1 pathway. Biegała Ł; Gajek A; Marczak A; Rogalska A Biochim Biophys Acta Rev Cancer; 2021 Dec; 1876(2):188633. PubMed ID: 34619333 [TBL] [Abstract][Full Text] [Related]
7. PARP Inhibition Increases the Reliance on ATR/CHK1 Checkpoint Signaling Leading to Synthetic Lethality-An Alternative Treatment Strategy for Epithelial Ovarian Cancer Cells Independent from HR Effectiveness. Gralewska P; Gajek A; Marczak A; Mikuła M; Ostrowski J; Śliwińska A; Rogalska A Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33352723 [TBL] [Abstract][Full Text] [Related]
8. The Influence of PARP, ATR, CHK1 Inhibitors on Premature Mitotic Entry and Genomic Instability in High-Grade Serous Gralewska P; Gajek A; Rybaczek D; Marczak A; Rogalska A Cells; 2022 Jun; 11(12):. PubMed ID: 35741017 [TBL] [Abstract][Full Text] [Related]
10. Participation of the ATR/CHK1 pathway in replicative stress targeted therapy of high-grade ovarian cancer. Gralewska P; Gajek A; Marczak A; Rogalska A J Hematol Oncol; 2020 Apr; 13(1):39. PubMed ID: 32316968 [TBL] [Abstract][Full Text] [Related]
11. The synthetic lethality of targeting cell cycle checkpoints and PARPs in cancer treatment. Li S; Wang L; Wang Y; Zhang C; Hong Z; Han Z J Hematol Oncol; 2022 Oct; 15(1):147. PubMed ID: 36253861 [TBL] [Abstract][Full Text] [Related]
12. Advances in ATM, ATR, WEE1, and CHK1/2 inhibitors in the treatment of PARP inhibitor-resistant ovarian cancer. Tang Q; Wang X; Wang H; Zhong L; Zou D Cancer Biol Med; 2024 Feb; 20(12):915-21. PubMed ID: 38318945 [No Abstract] [Full Text] [Related]
13. Targeting the ATR/CHK1 Axis with PARP Inhibition Results in Tumor Regression in Kim H; George E; Ragland R; Rafail S; Zhang R; Krepler C; Morgan M; Herlyn M; Brown E; Simpkins F Clin Cancer Res; 2017 Jun; 23(12):3097-3108. PubMed ID: 27993965 [No Abstract] [Full Text] [Related]