These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Relaxation dynamics in quantum dissipative systems: the microscopic effect of intramolecular vibrational energy redistribution. Uranga-Piña L; Tremblay JC J Chem Phys; 2014 Aug; 141(7):074703. PubMed ID: 25149802 [TBL] [Abstract][Full Text] [Related]
4. Open quantum dynamics of strongly coupled oscillators with multi-configuration time-dependent Hartree propagation and Markovian quantum jumps. Triana JF; Herrera F J Chem Phys; 2022 Nov; 157(19):194104. PubMed ID: 36414439 [TBL] [Abstract][Full Text] [Related]
5. Reduced and exact quantum dynamics of the vibrational relaxation of a molecular system interacting with a finite-dimensional bath. Bouakline F; Lüder F; Martinazzo R; Saalfrank P J Phys Chem A; 2012 Nov; 116(46):11118-27. PubMed ID: 22775197 [TBL] [Abstract][Full Text] [Related]
6. Open system dynamics using Gaussian-based multiconfigurational time-dependent Hartree wavefunctions: Application to environment-modulated tunneling. Picconi D; Burghardt I J Chem Phys; 2019 Jun; 150(22):224106. PubMed ID: 31202230 [TBL] [Abstract][Full Text] [Related]
7. Cumulative isomerization probability studied by various transition state wave packet methods including the MCTDH algorithm. Benchmark: HCN-->CNH isomerization. Lasorne B; Gatti F; Baloitcha E; Meyer HD; Desouter-Lecomte M J Chem Phys; 2004 Jul; 121(2):644-54. PubMed ID: 15260590 [TBL] [Abstract][Full Text] [Related]
8. An ensemble variational quantum algorithm for non-Markovian quantum dynamics. Walters PL; Tsakanikas J; Wang F Phys Chem Chem Phys; 2024 Jul; 26(30):20500-20510. PubMed ID: 39034756 [TBL] [Abstract][Full Text] [Related]
9. Stochastic wave packet approach to nonadiabatic scattering of diatomic molecules from metals. Serwatka T; Tremblay JC J Chem Phys; 2019 May; 150(18):184105. PubMed ID: 31091890 [TBL] [Abstract][Full Text] [Related]
10. Multidimensional density operator propagations in open systems: model studies on vibrational relaxations and surface sticking processes. Cattarius C; Meyer HD J Chem Phys; 2004 Nov; 121(19):9283-96. PubMed ID: 15538849 [TBL] [Abstract][Full Text] [Related]
11. Markovian exchange phenomena in magnetic resonance and the Lindblad equation. Bengs C J Magn Reson; 2021 Jan; 322():106868. PubMed ID: 33253960 [TBL] [Abstract][Full Text] [Related]
12. Benchmark calculations for dissipative dynamics of a system coupled to an anharmonic bath with the multiconfiguration time-dependent Hartree method. López-López S; Martinazzo R; Nest M J Chem Phys; 2011 Mar; 134(9):094102. PubMed ID: 21384945 [TBL] [Abstract][Full Text] [Related]
15. Non-Markovian quantum jump with generalized Lindblad master equation. Huang XL; Sun HY; Yi XX Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041107. PubMed ID: 18999379 [TBL] [Abstract][Full Text] [Related]
16. Lindblad Master Equations for Quantum Systems Coupled to Dissipative Bosonic Modes. Jäger SB; Schmit T; Morigi G; Holland MJ; Betzholz R Phys Rev Lett; 2022 Aug; 129(6):063601. PubMed ID: 36018669 [TBL] [Abstract][Full Text] [Related]
17. Dynamical Invariant and Exact Mechanical Analyses for the Caldirola-Kanai Model of Dissipative Three Coupled Oscillators. Medjber S; Menouar S; Choi JR Entropy (Basel); 2021 Jun; 23(7):. PubMed ID: 34208801 [TBL] [Abstract][Full Text] [Related]
18. Dissipative quantum dynamics with the surrogate Hamiltonian approach. A comparison between spin and harmonic baths. Gelman D; Koch CP; Kosloff R J Chem Phys; 2004 Jul; 121(2):661-71. PubMed ID: 15260592 [TBL] [Abstract][Full Text] [Related]
19. Semiquantal time-dependent Hartree approach to condensed phase chemical dynamics: application to the system-bath model. Ando K J Chem Phys; 2004 Oct; 121(15):7136-43. PubMed ID: 15473779 [TBL] [Abstract][Full Text] [Related]