These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 35259902)
1. Modeling and measuring plasmonic excitations in hollow spherical gold nanoparticles. Müller MM; Perdana N; Rockstuhl C; Holzer C J Chem Phys; 2022 Mar; 156(9):094103. PubMed ID: 35259902 [TBL] [Abstract][Full Text] [Related]
2. Semiempirical Modeling of Ag Nanoclusters: New Parameters for Optical Property Studies Enable Determination of Double Excitation Contributions to Plasmonic Excitation. Gieseking RL; Ratner MA; Schatz GC J Phys Chem A; 2016 Jul; 120(26):4542-9. PubMed ID: 27259004 [TBL] [Abstract][Full Text] [Related]
3. Comparing the nature of quantum plasmonic excitations for closely spaced silver and gold dimers. Jamshidi Z; Asadi-Aghbolaghi N; Morad R; Mahmoudi E; Sen S; Maaza M; Visscher L J Chem Phys; 2022 Feb; 156(7):074102. PubMed ID: 35183094 [TBL] [Abstract][Full Text] [Related]
4. Effects of ligands on (de-)enhancement of plasmonic excitations of silver, gold and bimetallic nanoclusters: TD-DFT+TB calculations. Asadi-Aghbolaghi N; Pototschnig J; Jamshidi Z; Visscher L Phys Chem Chem Phys; 2021 Sep; 23(33):17929-17938. PubMed ID: 34379064 [TBL] [Abstract][Full Text] [Related]
5. How To Identify Plasmons from the Optical Response of Nanostructures. Zhang R; Bursi L; Cox JD; Cui Y; Krauter CM; Alabastri A; Manjavacas A; Calzolari A; Corni S; Molinari E; Carter EA; García de Abajo FJ; Zhang H; Nordlander P ACS Nano; 2017 Jul; 11(7):7321-7335. PubMed ID: 28651057 [TBL] [Abstract][Full Text] [Related]
6. Orbital-free methods for plasmonics: Linear response. Della Sala F J Chem Phys; 2022 Sep; 157(10):104101. PubMed ID: 36109244 [TBL] [Abstract][Full Text] [Related]
7. Quantifying the Plasmonic Character of Optical Excitations in a Molecular J-Aggregate. Guerrini M; Calzolari A; Varsano D; Corni S J Chem Theory Comput; 2019 May; 15(5):3197-3203. PubMed ID: 30986064 [TBL] [Abstract][Full Text] [Related]
8. Critical Assessment of TD-DFT for Excited States of Open-Shell Systems: I. Doublet-Doublet Transitions. Li Z; Liu W J Chem Theory Comput; 2016 Jan; 12(1):238-60. PubMed ID: 26672389 [TBL] [Abstract][Full Text] [Related]
9. Spin-adapted open-shell time-dependent density functional theory. II. Theory and pilot application. Li Z; Liu W; Zhang Y; Suo B J Chem Phys; 2011 Apr; 134(13):134101. PubMed ID: 21476737 [TBL] [Abstract][Full Text] [Related]
10. Assessment of charge-transfer excitations with time-dependent, range-separated density functional theory based on long-range MP2 and multiconfigurational self-consistent field wave functions. Hedegård ED; Heiden F; Knecht S; Fromager E; Jensen HJ J Chem Phys; 2013 Nov; 139(18):184308. PubMed ID: 24320275 [TBL] [Abstract][Full Text] [Related]
11. Excitations, optical absorption spectra, and optical excitonic gaps of heterofullerenes. I. C60, C59N+, and C48N12: theory and experiment. Xie RH; Bryant GW; Sun G; Nicklaus MC; Heringer D; Frauenheim T; Manaa MR; Smith VH; Araki Y; Ito O J Chem Phys; 2004 Mar; 120(11):5133-47. PubMed ID: 15267383 [TBL] [Abstract][Full Text] [Related]
12. Optical properties of plasmonic core-shell nanomatryoshkas: a quantum hydrodynamic analysis. Khalid M; Sala FD; Ciracì C Opt Express; 2018 Jun; 26(13):17322-17334. PubMed ID: 30119545 [TBL] [Abstract][Full Text] [Related]
13. Plasmon Couplings from Subsystem Time-Dependent Density Functional Theory. Giannone G; Śmiga S; D'Agostino S; Fabiano E; Della Sala F J Phys Chem A; 2021 Aug; 125(33):7246-7259. PubMed ID: 34403247 [TBL] [Abstract][Full Text] [Related]
14. Quantum effects in the optical response of extended plasmonic gaps: validation of the quantum corrected model in core-shell nanomatryushkas. Zapata M; Camacho Beltrán ÁS; Borisov AG; Aizpurua J Opt Express; 2015 Mar; 23(6):8134-49. PubMed ID: 25837151 [TBL] [Abstract][Full Text] [Related]
15. Spin-adapted open-shell time-dependent density functional theory. III. An even better and simpler formulation. Li Z; Liu W J Chem Phys; 2011 Nov; 135(19):194106. PubMed ID: 22112065 [TBL] [Abstract][Full Text] [Related]
16. Enhancing colloidal metallic nanocatalysis: sharp edges and corners for solid nanoparticles and cage effect for hollow ones. Mahmoud MA; Narayanan R; El-Sayed MA Acc Chem Res; 2013 Aug; 46(8):1795-805. PubMed ID: 23387515 [TBL] [Abstract][Full Text] [Related]
17. Spin-flip time dependent density functional theory applied to excited states with single, double, or mixed electron excitation character. Rinkevicius Z; Vahtras O; Agren H J Chem Phys; 2010 Sep; 133(11):114104. PubMed ID: 20866123 [TBL] [Abstract][Full Text] [Related]
18. Dichroism of plasmonic chiral nanoalloys by rational design. D'Antoni P; Toffoli D; Fronzoni G; Stener M; Sementa L; Fortunelli A J Comput Chem; 2024 Jul; 45(19):1657-1666. PubMed ID: 38551316 [TBL] [Abstract][Full Text] [Related]
19. Critical Assessment of Time-Dependent Density Functional Theory for Excited States of Open-Shell Systems: II. Doublet-Quartet Transitions. Li Z; Liu W J Chem Theory Comput; 2016 Jun; 12(6):2517-27. PubMed ID: 27159167 [TBL] [Abstract][Full Text] [Related]
20. Embedded correlated wavefunction schemes: theory and applications. Libisch F; Huang C; Carter EA Acc Chem Res; 2014 Sep; 47(9):2768-75. PubMed ID: 24873211 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]