These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 35259931)

  • 1. Flow Chemistry: A Sustainable Voyage Through the Chemical Universe en Route to Smart Manufacturing.
    Volk AA; Campbell ZS; Ibrahim MYS; Bennett JA; Abolhasani M
    Annu Rev Chem Biomol Eng; 2022 Jun; 13():45-72. PubMed ID: 35259931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications.
    Mark D; Haeberle S; Roth G; von Stetten F; Zengerle R
    Chem Soc Rev; 2010 Mar; 39(3):1153-82. PubMed ID: 20179830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modular microfluidics for life sciences.
    Wu J; Fang H; Zhang J; Yan S
    J Nanobiotechnology; 2023 Mar; 21(1):85. PubMed ID: 36906553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conventional and emerging strategies for the fabrication and functionalization of PDMS-based microfluidic devices.
    Shakeri A; Khan S; Didar TF
    Lab Chip; 2021 Aug; 21(16):3053-3075. PubMed ID: 34286800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic Devices as Process Development Tools for Cellular Therapy Manufacturing.
    Aranda Hernandez J; Heuer C; Bahnemann J; Szita N
    Adv Biochem Eng Biotechnol; 2022; 179():101-127. PubMed ID: 34410457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. "Connecting worlds - a view on microfluidics for a wider application".
    Fernandes AC; Gernaey KV; Krühne U
    Biotechnol Adv; 2018; 36(4):1341-1366. PubMed ID: 29733891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidics for Environmental Applications.
    Wang T; Yu C; Xie X
    Adv Biochem Eng Biotechnol; 2022; 179():267-290. PubMed ID: 32440697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Piezoresistive Conductive Microfluidic Membranes for Low-Cost On-Chip Pressure and Flow Sensing.
    Islam MN; Doria SM; Fu X; Gagnon ZR
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput screening approaches and combinatorial development of biomaterials using microfluidics.
    Barata D; van Blitterswijk C; Habibovic P
    Acta Biomater; 2016 Apr; 34():1-20. PubMed ID: 26361719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid Manufacturing of Multilayered Microfluidic Devices for Organ on a Chip Applications.
    Paoli R; Di Giuseppe D; Badiola-Mateos M; Martinelli E; Lopez-Martinez MJ; Samitier J
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33669434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lab on a body for biomedical electrochemical sensing applications: The next generation of microfluidic devices.
    Jeerapan I; Moonla C; Thavarungkul P; Kanatharana P
    Prog Mol Biol Transl Sci; 2022; 187(1):249-279. PubMed ID: 35094777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A survey of 3D printing technology applied to paper microfluidics.
    Fu E; Wentland L
    Lab Chip; 2021 Dec; 22(1):9-25. PubMed ID: 34897346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Challenges and opportunities in micro/nanofluidic and lab-on-a-chip.
    Verma N; Pandya A
    Prog Mol Biol Transl Sci; 2022; 186(1):289-302. PubMed ID: 35033289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optically-controlled closable microvalves for polymeric centrifugal microfluidic devices.
    Woolf MS; Dignan LM; Lewis HM; Tomley CJ; Nauman AQ; Landers JP
    Lab Chip; 2020 Apr; 20(8):1426-1440. PubMed ID: 32201873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manufacturing of Microfluidic Devices with Interchangeable Commercial Fiber Optic Sensors.
    Wlodarczyk KL; MacPherson WN; Hand DP; Maroto-Valer MM
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pneumatic oscillator circuits for timing and control of integrated microfluidics.
    Duncan PN; Nguyen TV; Hui EE
    Proc Natl Acad Sci U S A; 2013 Nov; 110(45):18104-9. PubMed ID: 24145429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward microfluidic continuous-flow and intelligent downstream processing of biopharmaceuticals.
    Sharma V; Mottafegh A; Joo JU; Kang JH; Wang L; Kim DP
    Lab Chip; 2024 May; 24(11):2861-2882. PubMed ID: 38751338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microflow chemistry and its electrification for sustainable chemical manufacturing.
    Chen TY; Hsiao YW; Baker-Fales M; Cameli F; Dimitrakellis P; Vlachos DG
    Chem Sci; 2022 Sep; 13(36):10644-10685. PubMed ID: 36320706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ecotoxicology Goes on a Chip: Embracing Miniaturized Bioanalysis in Aquatic Risk Assessment.
    Campana O; Wlodkowic D
    Environ Sci Technol; 2018 Feb; 52(3):932-946. PubMed ID: 29284083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerating innovation and commercialization through standardization of microfluidic-based medical devices.
    Reyes DR; van Heeren H; Guha S; Herbertson L; Tzannis AP; Ducrée J; Bissig H; Becker H
    Lab Chip; 2021 Jan; 21(1):9-21. PubMed ID: 33289737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.