These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 35259931)

  • 21. A review of digital microfluidics as portable platforms for lab-on a-chip applications.
    Samiei E; Tabrizian M; Hoorfar M
    Lab Chip; 2016 Jul; 16(13):2376-96. PubMed ID: 27272540
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications.
    Luka G; Ahmadi A; Najjaran H; Alocilja E; DeRosa M; Wolthers K; Malki A; Aziz H; Althani A; Hoorfar M
    Sensors (Basel); 2015 Dec; 15(12):30011-31. PubMed ID: 26633409
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Paper based microfluidics: A forecast toward the most affordable and rapid point-of-care devices.
    Sinha A; Basu M; Chandna P
    Prog Mol Biol Transl Sci; 2022; 186(1):109-158. PubMed ID: 35033281
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microscale technology and biocatalytic processes: opportunities and challenges for synthesis.
    Wohlgemuth R; Plazl I; Žnidaršič-Plazl P; Gernaey KV; Woodley JM
    Trends Biotechnol; 2015 May; 33(5):302-14. PubMed ID: 25836031
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modular Chemical Process Intensification: A Review.
    Kim YH; Park LK; Yiacoumi S; Tsouris C
    Annu Rev Chem Biomol Eng; 2017 Jun; 8():359-380. PubMed ID: 28399653
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accelerated Development of Colloidal Nanomaterials Enabled by Modular Microfluidic Reactors: Toward Autonomous Robotic Experimentation.
    Volk AA; Epps RW; Abolhasani M
    Adv Mater; 2021 Jan; 33(4):e2004495. PubMed ID: 33289177
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Applications of Microfluidics in Liquid Crystal-Based Biosensors.
    Deng J; Han D; Yang J
    Biosensors (Basel); 2021 Oct; 11(10):. PubMed ID: 34677341
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent advances on open fluidic systems for biomedical applications: A review.
    Oliveira NM; Vilabril S; Oliveira MB; Reis RL; Mano JF
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():851-863. PubMed ID: 30678977
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A review on continuous-flow microfluidic PCR in droplets: Advances, challenges and future.
    Zhang Y; Jiang HR
    Anal Chim Acta; 2016 Mar; 914():7-16. PubMed ID: 26965323
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidics as an Emerging Platform for Exploring Soil Environmental Processes: A Critical Review.
    Zhu X; Wang K; Yan H; Liu C; Zhu X; Chen B
    Environ Sci Technol; 2022 Jan; 56(2):711-731. PubMed ID: 34985862
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Industrial lab-on-a-chip: design, applications and scale-up for drug discovery and delivery.
    Vladisavljević GT; Khalid N; Neves MA; Kuroiwa T; Nakajima M; Uemura K; Ichikawa S; Kobayashi I
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1626-63. PubMed ID: 23899864
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Manufacturing methods and applications of membranes in microfluidics.
    Chen X; Shen J; Hu Z; Huo X
    Biomed Microdevices; 2016 Dec; 18(6):104. PubMed ID: 27796675
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Overcoming technological barriers in microfluidics: Leakage testing.
    Silverio V; Guha S; Keiser A; Natu R; Reyes DR; van Heeren H; Verplanck N; Herbertson LH
    Front Bioeng Biotechnol; 2022; 10():958582. PubMed ID: 36159671
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfluidics: a concise review of the history, principles, design, applications, and future outlook.
    Hajam MI; Khan MM
    Biomater Sci; 2024 Jan; 12(2):218-251. PubMed ID: 38108438
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Achieving continuous manufacturing: technologies and approaches for synthesis, workup, and isolation of drug substance. May 20-21, 2014 Continuous Manufacturing Symposium.
    Baxendale IR; Braatz RD; Hodnett BK; Jensen KF; Johnson MD; Sharratt P; Sherlock JP; Florence AJ
    J Pharm Sci; 2015 Mar; 104(3):781-91. PubMed ID: 25470351
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Digital Manufacturing for Microfluidics.
    Naderi A; Bhattacharjee N; Folch A
    Annu Rev Biomed Eng; 2019 Jun; 21():325-364. PubMed ID: 31167099
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Emerging Roles of Microfluidics in Brain Research: From Cerebral Fluids Manipulation to Brain-on-a-Chip and Neuroelectronic Devices Engineering.
    Wan J; Zhou S; Mea HJ; Guo Y; Ku H; Urbina BM
    Chem Rev; 2022 Apr; 122(7):7142-7181. PubMed ID: 35080375
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design of pressure-driven microfluidic networks using electric circuit analogy.
    Oh KW; Lee K; Ahn B; Furlani EP
    Lab Chip; 2012 Feb; 12(3):515-45. PubMed ID: 22179505
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Roll-to-Roll Manufacturing of Integrated Immunodetection Sensors.
    Liedert C; Rannaste L; Kokkonen A; Huttunen OH; Liedert R; Hiltunen J; Hakalahti L
    ACS Sens; 2020 Jul; 5(7):2010-2017. PubMed ID: 32469200
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidic devices: useful tools for bioprocess intensification.
    Marques MP; Fernandes P
    Molecules; 2011 Sep; 16(10):8368-401. PubMed ID: 21963626
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.