These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 35259931)
41. Advances in microfluidics for drug discovery. Lombardi D; Dittrich PS Expert Opin Drug Discov; 2010 Nov; 5(11):1081-94. PubMed ID: 22827746 [TBL] [Abstract][Full Text] [Related]
42. Smart Microfluidics: Synergy of Machine Learning and Microfluidics in the Development of Medical Diagnostics for Chronic and Emerging Infectious Diseases. Madukwe DUP; Mike-Ogburia MI; Nduka N; Nzeobi J Crit Rev Biomed Eng; 2023; 51(1):41-58. PubMed ID: 37522540 [TBL] [Abstract][Full Text] [Related]
43. Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits. Olanrewaju A; Beaugrand M; Yafia M; Juncker D Lab Chip; 2018 Aug; 18(16):2323-2347. PubMed ID: 30010168 [TBL] [Abstract][Full Text] [Related]
44. Opportunities involving microfluidics and 3D culture systems to the Ferraz MAMM; Ferronato GA Anim Reprod; 2023; 20(2):e20230058. PubMed ID: 37638255 [TBL] [Abstract][Full Text] [Related]
45. A review on microfluidics manipulation of the extracellular chemical microenvironment and its emerging application to cell analysis. Chen P; Li S; Guo Y; Zeng X; Liu BF Anal Chim Acta; 2020 Aug; 1125():94-113. PubMed ID: 32674786 [TBL] [Abstract][Full Text] [Related]
46. Microfluidic Surgery in Single Cells and Multicellular Systems. Zhang KS; Nadkarni AV; Paul R; Martin AM; Tang SKY Chem Rev; 2022 Apr; 122(7):7097-7141. PubMed ID: 35049287 [TBL] [Abstract][Full Text] [Related]
47. Towards practical sample preparation in point-of-care testing: user-friendly microfluidic devices. Park J; Han DH; Park JK Lab Chip; 2020 Apr; 20(7):1191-1203. PubMed ID: 32119024 [TBL] [Abstract][Full Text] [Related]
48. Multiple functions of microfluidic platforms: Characterization and applications in tissue engineering and diagnosis of cancer. Davaran S; Sadeghinia M; Jamalpoor Z; Raeisdasteh Hokmabad V; Doosti-Telgerd M; Karimian A; Sadeghinia Z; Khalilifard J; Keramt A; Moradikhah F; Sadeghinia A Electrophoresis; 2020 Jun; 41(12):1081-1094. PubMed ID: 32103511 [TBL] [Abstract][Full Text] [Related]
49. Automated Addressable Microfluidic Device for Minimally Disruptive Manipulation of Cells and Fluids within Living Cultures. Tong A; Pham QL; Shah V; Naik A; Abatemarco P; Voronov R ACS Biomater Sci Eng; 2020 Mar; 6(3):1809-1820. PubMed ID: 33455370 [TBL] [Abstract][Full Text] [Related]
50. Logic digital fluidic in miniaturized functional devices: Perspective to the next generation of microfluidic lab-on-chips. Zhang Q; Zhang M; Djeghlaf L; Bataille J; Gamby J; Haghiri-Gosnet AM; Pallandre A Electrophoresis; 2017 Apr; 38(7):953-976. PubMed ID: 28059451 [TBL] [Abstract][Full Text] [Related]
51. From organ-on-chip to body-on-chip: The next generation of microfluidics platforms for in vitro drug efficacy and toxicity testing. Lacombe J; Soldevila M; Zenhausern F Prog Mol Biol Transl Sci; 2022; 187(1):41-91. PubMed ID: 35094781 [TBL] [Abstract][Full Text] [Related]
52. A smart and portable micropump for stable liquid delivery. Zhang X; Xia K; Ji A; Xiang N Electrophoresis; 2019 Mar; 40(6):865-872. PubMed ID: 30628114 [TBL] [Abstract][Full Text] [Related]
53. Computer-Aided Design of Microfluidic Circuits. Tsur EE Annu Rev Biomed Eng; 2020 Jun; 22():285-307. PubMed ID: 32343907 [TBL] [Abstract][Full Text] [Related]
54. Next-Generation Microfluidics for Biomedical Research and Healthcare Applications. Deliorman M; Ali DS; Qasaimeh MA Biomed Eng Comput Biol; 2023; 14():11795972231214387. PubMed ID: 38033395 [TBL] [Abstract][Full Text] [Related]
55. Modular Pressure and Flow Rate-Balanced Microfluidic Serial Dilution Networks for Miniaturised Point-of-Care Diagnostic Platforms. Vasilakis N; Papadimitriou KI; Morgan H; Prodromakis T Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30795601 [TBL] [Abstract][Full Text] [Related]
56. Rapid development and optimization of paper microfluidic designs using software automation. Potter J; Brisk P; Grover WH Anal Chim Acta; 2021 Nov; 1184():338985. PubMed ID: 34625247 [TBL] [Abstract][Full Text] [Related]
57. Additive Biotech-Chances, challenges, and recent applications of additive manufacturing technologies in biotechnology. Krujatz F; Lode A; Seidel J; Bley T; Gelinsky M; Steingroewer J N Biotechnol; 2017 Oct; 39(Pt B):222-231. PubMed ID: 28890405 [TBL] [Abstract][Full Text] [Related]
58. Fundamentals, biomedical applications and future potential of micro-scale cavitation-a review. Seyedmirzaei Sarraf S; Rokhsar Talabazar F; Namli I; Maleki M; Sheibani Aghdam A; Gharib G; Grishenkov D; Ghorbani M; Koşar A Lab Chip; 2022 Jun; 22(12):2237-2258. PubMed ID: 35531747 [TBL] [Abstract][Full Text] [Related]
59. Design, fabrication and assembly of lab-on-a-chip and its uses. Pradeep A; Raveendran J; Babu TGS Prog Mol Biol Transl Sci; 2022; 187(1):121-162. PubMed ID: 35094773 [TBL] [Abstract][Full Text] [Related]
60. Pneumatically actuated microvalve circuits for programmable automation of chemical and biochemical analysis. Kim J; Stockton AM; Jensen EC; Mathies RA Lab Chip; 2016 Mar; 16(5):812-9. PubMed ID: 26864083 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]