These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
66. Microfluidics for pharmaceutical nanoparticle fabrication: The truth and the myth. Hamdallah SI; Zoqlam R; Erfle P; Blyth M; Alkilany AM; Dietzel A; Qi S Int J Pharm; 2020 Jun; 584():119408. PubMed ID: 32407942 [TBL] [Abstract][Full Text] [Related]
67. Engineering a sustainable future for point-of-care diagnostics and single-use microfluidic devices. Ongaro AE; Ndlovu Z; Sollier E; Otieno C; Ondoa P; Street A; Kersaudy-Kerhoas M Lab Chip; 2022 Aug; 22(17):3122-3137. PubMed ID: 35899603 [TBL] [Abstract][Full Text] [Related]
68. Nanotechnology-assisted microfluidic systems: from bench to bedside. Rabiee N; Ahmadi S; Fatahi Y; Rabiee M; Bagherzadeh M; Dinarvand R; Bagheri B; Zarrintaj P; Saeb MR; Webster TJ Nanomedicine (Lond); 2021 Feb; 16(3):237-258. PubMed ID: 33501839 [TBL] [Abstract][Full Text] [Related]
69. Microfluidics for nanomedicines manufacturing: An affordable and low-cost 3D printing approach. Tiboni M; Tiboni M; Pierro A; Del Papa M; Sparaventi S; Cespi M; Casettari L Int J Pharm; 2021 Apr; 599():120464. PubMed ID: 33713759 [TBL] [Abstract][Full Text] [Related]
70. Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications. Capretto L; Carugo D; Mazzitelli S; Nastruzzi C; Zhang X Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1496-532. PubMed ID: 23933616 [TBL] [Abstract][Full Text] [Related]
71. Organ-on-a-Chip: A Preclinical Microfluidic Platform for the Progress of Nanomedicine. Rodrigues RO; Sousa PC; Gaspar J; Bañobre-López M; Lima R; Minas G Small; 2020 Dec; 16(51):e2003517. PubMed ID: 33236819 [TBL] [Abstract][Full Text] [Related]
72. Scaling up stem cell production: harnessing the potential of microfluidic devices. Ding L; Oh S; Shrestha J; Lam A; Wang Y; Radfar P; Warkiani ME Biotechnol Adv; 2023 Dec; 69():108271. PubMed ID: 37844769 [TBL] [Abstract][Full Text] [Related]
73. Derivation and Differentiation of Human Pluripotent Stem Cells in Microfluidic Devices. Luni C; Gagliano O; Elvassore N Annu Rev Biomed Eng; 2022 Jun; 24():231-248. PubMed ID: 35378044 [TBL] [Abstract][Full Text] [Related]
74. Towards a microfluidics platform for the continuous manufacture of organic and inorganic nanoparticles. Desai D; Guerrero YA; Balachandran V; Morton A; Lyon L; Larkin B; Solomon DE Nanomedicine; 2021 Jul; 35():102402. PubMed ID: 33932590 [TBL] [Abstract][Full Text] [Related]
75. An outlook on microfluidics: the promise and the challenge. Battat S; Weitz DA; Whitesides GM Lab Chip; 2022 Feb; 22(3):530-536. PubMed ID: 35048918 [TBL] [Abstract][Full Text] [Related]
76. Emerging applications of paper-based analytical devices for drug analysis: A review. Noviana E; Carrão DB; Pratiwi R; Henry CS Anal Chim Acta; 2020 Jun; 1116():70-90. PubMed ID: 32389191 [TBL] [Abstract][Full Text] [Related]
77. Microfluidic pressure in paper (μPiP): rapid prototyping and low-cost liquid handling for on-chip diagnostics. Islam MN; Yost JW; Gagnon ZR Analyst; 2022 Feb; 147(4):587-596. PubMed ID: 35037668 [TBL] [Abstract][Full Text] [Related]
78. Microfluidic nanomaterials: From synthesis to biomedical applications. Illath K; Kar S; Gupta P; Shinde A; Wankhar S; Tseng FG; Lim KT; Nagai M; Santra TS Biomaterials; 2022 Jan; 280():121247. PubMed ID: 34801251 [TBL] [Abstract][Full Text] [Related]
79. A disposable smart microfluidic platform integrated with on-chip flow sensors. Kim J; Cho H; Kim J; Park JS; Han KH Biosens Bioelectron; 2021 Mar; 176():112897. PubMed ID: 33342692 [TBL] [Abstract][Full Text] [Related]
80. Microfluidic Paper-Based Analytical Devices: From Design to Applications. Noviana E; Ozer T; Carrell CS; Link JS; McMahon C; Jang I; Henry CS Chem Rev; 2021 Oct; 121(19):11835-11885. PubMed ID: 34125526 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]