These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 35259931)

  • 81. Microfluidic devices for embryonic and larval zebrafish studies.
    Khalili A; Rezai P
    Brief Funct Genomics; 2019 Nov; 18(6):419-432. PubMed ID: 31034029
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Microfluidic platforms for lab-on-a-chip applications.
    Haeberle S; Zengerle R
    Lab Chip; 2007 Sep; 7(9):1094-110. PubMed ID: 17713606
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Generation of dynamic chemical signals with microfluidic C-DACs.
    Chen L; Azizi F; Mastrangelo CH
    Lab Chip; 2007 Jul; 7(7):850-5. PubMed ID: 17594003
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Role of microfluidics in accelerating new space missions.
    Kuang S; Singh NM; Wu Y; Shen Y; Ren W; Tu L; Yong KT; Song P
    Biomicrofluidics; 2022 Mar; 16(2):021503. PubMed ID: 35497325
    [TBL] [Abstract][Full Text] [Related]  

  • 85. High-Efficiency and High-Throughput On-Chip Exchange of the Continuous Phase in Droplet Microfluidic Systems.
    Kim M; Leong CM; Pan M; Blauch LR; Tang SKY
    SLAS Technol; 2017 Oct; 22(5):529-535. PubMed ID: 28402212
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Toward practical application of paper-based microfluidics for medical diagnostics: state-of-the-art and challenges.
    Yamada K; Shibata H; Suzuki K; Citterio D
    Lab Chip; 2017 Mar; 17(7):1206-1249. PubMed ID: 28251200
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Bubbles in microfluidics: an all-purpose tool for micromanipulation.
    Li Y; Liu X; Huang Q; Ohta AT; Arai T
    Lab Chip; 2021 Mar; 21(6):1016-1035. PubMed ID: 33538756
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications.
    Pires NM; Dong T; Hanke U; Hoivik N
    Sensors (Basel); 2014 Aug; 14(8):15458-79. PubMed ID: 25196161
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Design and experimental investigation of a novel spiral microfluidic chip to separate wide size range of micro-particles aimed at cell separation.
    Tabatabaei SA; Zabetian Targhi M
    Proc Inst Mech Eng H; 2021 Nov; 235(11):1315-1328. PubMed ID: 34218740
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Advancements in microfluidics for nanoparticle separation.
    Salafi T; Zeming KK; Zhang Y
    Lab Chip; 2016 Dec; 17(1):11-33. PubMed ID: 27830852
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Human Organs-on-Chips: A Review of the State-of-the-Art, Current Prospects, and Future Challenges.
    Zarrintaj P; Saeb MR; Stadler FJ; Yazdi MK; Nezhad MN; Mohebbi S; Seidi F; Ganjali MR; Mozafari M
    Adv Biol (Weinh); 2022 Jan; 6(1):e2000526. PubMed ID: 34837667
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Interplay between materials and microfluidics.
    Hou X; Zhang YS; Trujillo-de Santiago G; Alvarez MM; Ribas J; Jonas SJ; Weiss PS; Andrews AM; Aizenberg J; Khademhosseini A
    Nat Rev Mater; 2017 May; 2(5):. PubMed ID: 38993477
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Multiphase flow in microfluidics: From droplets and bubbles to the encapsulated structures.
    Sattari A; Hanafizadeh P; Hoorfar M
    Adv Colloid Interface Sci; 2020 Aug; 282():102208. PubMed ID: 32721624
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Democratizing Microreactor Technology for Accelerated Discoveries in Chemistry and Materials Research.
    Sato T; Masuda K; Sano C; Matsumoto K; Numata H; Munetoh S; Kasama T; Miyake R
    Micromachines (Basel); 2024 Aug; 15(9):. PubMed ID: 39337724
    [TBL] [Abstract][Full Text] [Related]  

  • 95. The sustainability of emerging technologies for use in pharmaceutical manufacturing.
    Weaver E; O'Hagan C; Lamprou DA
    Expert Opin Drug Deliv; 2022 Jul; 19(7):861-872. PubMed ID: 35732275
    [TBL] [Abstract][Full Text] [Related]  

  • 96. In-depth analysis of biocatalysts by microfluidics: An emerging source of data for machine learning.
    Vasina M; Kovar D; Damborsky J; Ding Y; Yang T; deMello A; Mazurenko S; Stavrakis S; Prokop Z
    Biotechnol Adv; 2023 Sep; 66():108171. PubMed ID: 37150331
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Methods and Tools for Performance Assurance of Smart Manufacturing Systems.
    Kibira D; Morris KC; Kumaraguru S
    J Res Natl Inst Stand Technol; 2016; 121():282-313. PubMed ID: 34434624
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Synergy of Microfluidics and Ultrasound : Process Intensification Challenges and Opportunities.
    Fernandez Rivas D; Kuhn S
    Top Curr Chem (Cham); 2016 Oct; 374(5):70. PubMed ID: 27654863
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Toward sustainability in zeolite manufacturing: An industry perspective.
    Parvulescu AN; Maurer S
    Front Chem; 2022; 10():1050363. PubMed ID: 36561141
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Defining Near-Term to Long-Term Research Opportunities to Advance Metrics, Models, and Methods for Smart and Sustainable Manufacturing.
    Raman AS; Haapala KR; Raoufi K; Linke BS; Bernstein WZ; Morris KC
    Smart Sustain Manuf Syst; 2020; 4(2):. PubMed ID: 33043276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.