These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 35259931)

  • 101. AlphaFlow: autonomous discovery and optimization of multi-step chemistry using a self-driven fluidic lab guided by reinforcement learning.
    Volk AA; Epps RW; Yonemoto DT; Masters BS; Castellano FN; Reyes KG; Abolhasani M
    Nat Commun; 2023 Mar; 14(1):1403. PubMed ID: 36918561
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Optofluidic imaging meets deep learning: from merging to emerging.
    Siu DMD; Lee KCM; Chung BMF; Wong JSJ; Zheng G; Tsia KK
    Lab Chip; 2023 Mar; 23(5):1011-1033. PubMed ID: 36601812
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Free-Boundary Microfluidic Platform for Advanced Materials Manufacturing and Applications.
    Zhu Z; Chen T; Huang F; Wang S; Zhu P; Xu RX; Si T
    Adv Mater; 2024 Feb; 36(7):e2304840. PubMed ID: 37722080
    [TBL] [Abstract][Full Text] [Related]  

  • 104. A Microfluidic Transistor for Liquid Signal Processing.
    Gopinathan KA; Mishra A; Mutlu BR; Edd JF; Toner M
    bioRxiv; 2023 Jun; ():. PubMed ID: 37398240
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Collaborative approaches in sustainable and resilient manufacturing.
    Camarinha-Matos LM; Rocha AD; Graça P
    J Intell Manuf; 2022 Dec; ():1-21. PubMed ID: 36532704
    [TBL] [Abstract][Full Text] [Related]  

  • 106. New Opportunities for Organic Synthesis with Superheated Flow Chemistry.
    Bianchi P; Monbaliu JM
    Acc Chem Res; 2024 Aug; 57(15):2207-2218. PubMed ID: 39043368
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Transforming Nanomaterial Synthesis with Flow Chemistry.
    Munyebvu N; Nette J; Stavrakis S; Howes PD; DeMello AJ
    Chimia (Aarau); 2023 May; 77(5):312-318. PubMed ID: 38047827
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Microfluidics Used as a Tool to Understand and Optimize Membrane Filtration Processes.
    Bouhid de Aguiar I; Schroën K
    Membranes (Basel); 2020 Oct; 10(11):. PubMed ID: 33138236
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Flowmetering for microfluidics.
    Cavaniol C; Cesar W; Descroix S; Viovy JL
    Lab Chip; 2022 Sep; 22(19):3603-3617. PubMed ID: 35770690
    [TBL] [Abstract][Full Text] [Related]  

  • 110. The Rocky Road to a Digital Lab.
    Sagmeister P; Williams JD; Kappe CO
    Chimia (Aarau); 2023 May; 77(5):300-306. PubMed ID: 38047825
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Integrated membranes within centrifugal microfluidic devices: a review.
    O'Connell KC; Landers JP
    Lab Chip; 2023 Jul; 23(14):3130-3159. PubMed ID: 37357712
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Computational-Aided Approach for the Optimization of Microfluidic-Based Nanoparticles Manufacturing Process.
    Bellotti M; Chiesa E; Conti B; Genta I; Conti M; Auricchio F; Caimi A
    Ann Biomed Eng; 2024 Dec; 52(12):3240-3252. PubMed ID: 39098979
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Industry Review of Distributed Production in Discrete Manufacturing.
    Helu M; Sobel W; Nelaturi S; Waddell R; Hibbard S
    J Manuf Sci Eng; 2020 Nov; 142(11):. PubMed ID: 39391053
    [TBL] [Abstract][Full Text] [Related]  

  • 114. A perspective on automated advanced continuous flow manufacturing units for the upgrading of biobased chemicals toward pharmaceuticals.
    Kaisin G; Bovy L; Joyard Y; Maindron N; Tadino V; Monbaliu JM
    J Flow Chem; 2022 Nov; ():1-15. PubMed ID: 36467977
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Going with the µFlow: Reinterpreting Energy Input in Organic Synthesis.
    Vázquez-Amaya LY; Coppola GA; Van der Eycken EV; Sharma UK
    Chimia (Aarau); 2023 May; 77(5):327-338. PubMed ID: 38047829
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Solar Photooxygenations for the Manufacturing of Fine Chemicals-Technologies and Applications.
    Wau JS; Robertson MJ; Oelgemöller M
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33802876
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Smart manufacturing inspired approach to research, development, and scale-up of electrified chemical manufacturing systems.
    Richard D; Jang J; Çıtmacı B; Luo J; Canuso V; Korambath P; Morales-Leslie O; Davis JF; Malkani H; Christofides PD; Morales-Guio CG
    iScience; 2023 Jun; 26(6):106966. PubMed ID: 37378322
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Using formal methods to scope performance challenges for Smart Manufacturing Systems: focus on agility.
    Jung K; Morris KC; Lyons KW; Leong S; Cho H
    Concurr Eng Res Appl; 2015 Dec; 23(4):343-354. PubMed ID: 27141209
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Periodic Open Cellular Structures in Chemical Engineering: Application in Catalysis and Separation Processes.
    Eckendörfer L; Rudolf D; Brix A; Börnhorst M; Freund H
    Annu Rev Chem Biomol Eng; 2024 Apr; ():. PubMed ID: 38594930
    [TBL] [Abstract][Full Text] [Related]  

  • 120. A Perspective on Sustainable Computational Chemistry Software Development and Integration.
    Di Felice R; Mayes ML; Richard RM; Williams-Young DB; Chan GK; de Jong WA; Govind N; Head-Gordon M; Hermes MR; Kowalski K; Li X; Lischka H; Mueller KT; Mutlu E; Niklasson AMN; Pederson MR; Peng B; Shepard R; Valeev EF; van Schilfgaarde M; Vlaisavljevich B; Windus TL; Xantheas SS; Zhang X; Zimmerman PM
    J Chem Theory Comput; 2023 Oct; 19(20):7056-7076. PubMed ID: 37769271
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.