These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 35259931)
121. Process Intensification of a Napabucasin Manufacturing Method Utilizing Microflow Chemistry. Usutani H; Yamamoto K; Hashimoto K ACS Omega; 2023 Mar; 8(11):10373-10382. PubMed ID: 36969467 [TBL] [Abstract][Full Text] [Related]
122. On architecting and composing engineering information services to enable smart manufacturing. Kulvatunyou BS; Ivezic N; Srinivasan V J Comput Inf Sci Eng; 2016 Sep; 16(3):. PubMed ID: 27840595 [TBL] [Abstract][Full Text] [Related]
123. Development of a Large-Scale Cyanation Process Using Continuous Flow Chemistry En Route to the Synthesis of Remdesivir. Vieira T; Stevens AC; Chtchemelinine A; Gao D; Badalov P; Heumann L Org Process Res Dev; 2020 Oct; 24(10):2113-2121. PubMed ID: 37556265 [TBL] [Abstract][Full Text] [Related]
124. Kostal J; Brooks BW; Smith CA; Devineni G iScience; 2022 Nov; 25(11):105256. PubMed ID: 36281453 [TBL] [Abstract][Full Text] [Related]
126. Toward Molecular Cybernetics - the Art of Communicating Chemical Systems. Schmittel M; Howlader P Chem Rec; 2020 Dec; ():. PubMed ID: 33350570 [TBL] [Abstract][Full Text] [Related]
127. Performance metrics to unleash the power of self-driving labs in chemistry and materials science. Volk AA; Abolhasani M Nat Commun; 2024 Feb; 15(1):1378. PubMed ID: 38355564 [TBL] [Abstract][Full Text] [Related]
128. SysML Models for Discrete Event Logistics Systems. Sprock T; Bock C J Res Natl Inst Stand Technol; 2020; 125():125023. PubMed ID: 35924190 [No Abstract] [Full Text] [Related]
129. Continuous Stripping with Dense Carbon Dioxide. Kőrösi M; Kántor P; Bana P; Székely E ACS Omega; 2023 Dec; 8(49):46757-46762. PubMed ID: 38107946 [TBL] [Abstract][Full Text] [Related]
130. Continuous Ligand-Free Catalysis Using a Hybrid Polymer Network Support. Davis BA; Genzer J; Efimenko K; Abolhasani M JACS Au; 2023 Aug; 3(8):2226-2236. PubMed ID: 37654589 [TBL] [Abstract][Full Text] [Related]
132. Microfluidic Devices as Process Development Tools for Cellular Therapy Manufacturing. Aranda Hernandez J; Heuer C; Bahnemann J; Szita N Adv Biochem Eng Biotechnol; 2022; 179():101-127. PubMed ID: 34410457 [TBL] [Abstract][Full Text] [Related]
133. Flow Chemistry: A Sustainable Voyage Through the Chemical Universe en Route to Smart Manufacturing. Volk AA; Campbell ZS; Ibrahim MYS; Bennett JA; Abolhasani M Annu Rev Chem Biomol Eng; 2022 Jun; 13():45-72. PubMed ID: 35259931 [TBL] [Abstract][Full Text] [Related]
134. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Mark D; Haeberle S; Roth G; von Stetten F; Zengerle R Chem Soc Rev; 2010 Mar; 39(3):1153-82. PubMed ID: 20179830 [TBL] [Abstract][Full Text] [Related]
135. Conventional and emerging strategies for the fabrication and functionalization of PDMS-based microfluidic devices. Shakeri A; Khan S; Didar TF Lab Chip; 2021 Aug; 21(16):3053-3075. PubMed ID: 34286800 [TBL] [Abstract][Full Text] [Related]
136. Modular microfluidics for life sciences. Wu J; Fang H; Zhang J; Yan S J Nanobiotechnology; 2023 Mar; 21(1):85. PubMed ID: 36906553 [TBL] [Abstract][Full Text] [Related]