BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 35259985)

  • 1. Divergent paths in the evolutionary history of maternally transmitted clam symbionts.
    Perez M; Breusing C; Angers B; Beinart RA; Won YJ; Young CR
    Proc Biol Sci; 2022 Mar; 289(1970):20212137. PubMed ID: 35259985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Host hybridization as a potential mechanism of lateral symbiont transfer in deep-sea vesicomyid clams.
    Breusing C; Johnson SB; Vrijenhoek RC; Young CR
    Mol Ecol; 2019 Nov; 28(21):4697-4708. PubMed ID: 31478269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lateral symbiont acquisition in a maternally transmitted chemosynthetic clam endosymbiosis.
    Stewart FJ; Young CR; Cavanaugh CM
    Mol Biol Evol; 2008 Apr; 25(4):673-87. PubMed ID: 18192696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative genomics of vesicomyid clam (Bivalvia: Mollusca) chemosynthetic symbionts.
    Newton IL; Girguis PR; Cavanaugh CM
    BMC Genomics; 2008 Dec; 9():585. PubMed ID: 19055818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for homologous recombination in intracellular chemosynthetic clam symbionts.
    Stewart FJ; Young CR; Cavanaugh CM
    Mol Biol Evol; 2009 Jun; 26(6):1391-404. PubMed ID: 19289597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ancient Occasional Host Switching of Maternally Transmitted Bacterial Symbionts of Chemosynthetic Vesicomyid Clams.
    Ozawa G; Shimamura S; Takaki Y; Takishita K; Ikuta T; Barry JP; Maruyama T; Fujikura K; Yoshida T
    Genome Biol Evol; 2017 Sep; 9(9):2226-2236. PubMed ID: 28922872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyrosequencing analysis of endosymbiont population structure: co-occurrence of divergent symbiont lineages in a single vesicomyid host clam.
    Stewart FJ; Cavanaugh CM
    Environ Microbiol; 2009 Aug; 11(8):2136-47. PubMed ID: 19397674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling of bacterial endosymbiont and host mitochondrial genomes in the hydrothermal vent clam Calyptogena magnifica.
    Hurtado LA; Mateos M; Lutz RA; Vrijenhoek RC
    Appl Environ Microbiol; 2003 Apr; 69(4):2058-64. PubMed ID: 12676683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of genes for DNA recombination and repair in the reductive genome evolution of thioautotrophic symbionts of Calyptogena clams.
    Kuwahara H; Takaki Y; Shimamura S; Yoshida T; Maeda T; Kunieda T; Maruyama T
    BMC Evol Biol; 2011 Oct; 11():285. PubMed ID: 21966992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential genome evolution between companion symbionts in an insect-bacterial symbiosis.
    Bennett GM; McCutcheon JP; MacDonald BR; Romanovicz D; Moran NA
    mBio; 2014 Sep; 5(5):e01697-14. PubMed ID: 25271287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ongoing Transposon-Mediated Genome Reduction in the Luminous Bacterial Symbionts of Deep-Sea Ceratioid Anglerfishes.
    Hendry TA; Freed LL; Fader D; Fenolio D; Sutton TT; Lopez JV
    mBio; 2018 Jun; 9(3):. PubMed ID: 29946051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced genome of the thioautotrophic intracellular symbiont in a deep-sea clam, Calyptogena okutanii.
    Kuwahara H; Yoshida T; Takaki Y; Shimamura S; Nishi S; Harada M; Matsuyama K; Takishita K; Kawato M; Uematsu K; Fujiwara Y; Sato T; Kato C; Kitagawa M; Kato I; Maruyama T
    Curr Biol; 2007 May; 17(10):881-6. PubMed ID: 17493812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of genes related to Nucleotide Excision Repair (NER) and implications for reductive genome evolution in symbionts of deep-sea vesicomyid clams.
    Shimamura S; Kaneko T; Ozawa G; Matsumoto MN; Koshiishi T; Takaki Y; Kato C; Takai K; Yoshida T; Fujikura K; Barry JP; Maruyama T
    PLoS One; 2017; 12(2):e0171274. PubMed ID: 28199404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Host-symbiont co-speciation and reductive genome evolution in gut symbiotic bacteria of acanthosomatid stinkbugs.
    Kikuchi Y; Hosokawa T; Nikoh N; Meng XY; Kamagata Y; Fukatsu T
    BMC Biol; 2009 Jan; 7():2. PubMed ID: 19146674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global biogeography of chemosynthetic symbionts reveals both localized and globally distributed symbiont groups.
    Osvatic JT; Wilkins LGE; Leibrecht L; Leray M; Zauner S; Polzin J; Camacho Y; Gros O; van Gils JA; Eisen JA; Petersen JM; Yuen B
    Proc Natl Acad Sci U S A; 2021 Jul; 118(29):. PubMed ID: 34272286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome assembly of the chemosynthetic endosymbiont of the hydrothermal vent snail Alviniconcha adamantis from the Mariana Arc.
    Breusing C; Klobusnik NH; Hauer MA; Beinart RA
    G3 (Bethesda); 2022 Sep; 12(10):. PubMed ID: 35997584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome reduction and co-evolution between the primary and secondary bacterial symbionts of psyllids.
    Sloan DB; Moran NA
    Mol Biol Evol; 2012 Dec; 29(12):3781-92. PubMed ID: 22821013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Horizontal transmission and recombination maintain forever young bacterial symbiont genomes.
    Russell SL; Pepper-Tunick E; Svedberg J; Byrne A; Ruelas Castillo J; Vollmers C; Beinart RA; Corbett-Detig R
    PLoS Genet; 2020 Aug; 16(8):e1008935. PubMed ID: 32841233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mixed transmission modes and dynamic genome evolution in an obligate animal-bacterial symbiosis.
    Russell SL; Corbett-Detig RB; Cavanaugh CM
    ISME J; 2017 Jun; 11(6):1359-1371. PubMed ID: 28234348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical proximity may promote lateral acquisition of bacterial symbionts in vesicomyid clams.
    Decker C; Olu K; Arnaud-Haond S; Duperron S
    PLoS One; 2013; 8(7):e64830. PubMed ID: 23861734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.