BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 35260072)

  • 1. Global analysis of switchgrass (Panicum virgatum L.) transcriptomes in response to interactive effects of drought and heat stresses.
    Hayford RK; Serba DD; Xie S; Ayyappan V; Thimmapuram J; Saha MC; Wu CH; Kalavacharla VK
    BMC Plant Biol; 2022 Mar; 22(1):107. PubMed ID: 35260072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide profiling of histone (H3) lysine 4 (K4) tri-methylation (me3) under drought, heat, and combined stresses in switchgrass.
    Ayyappan V; Sripathi VR; Xie S; Saha MC; Hayford R; Serba DD; Subramani M; Thimmapuram J; Todd A; Kalavacharla VK
    BMC Genomics; 2024 Feb; 25(1):223. PubMed ID: 38424499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome analysis of heat stress response in switchgrass (Panicum virgatum L.).
    Li YF; Wang Y; Tang Y; Kakani VG; Mahalingam R
    BMC Plant Biol; 2013 Oct; 13():153. PubMed ID: 24093800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative transcriptome profiling of upland (VS16) and lowland (AP13) ecotypes of switchgrass.
    Ayyappan V; Saha MC; Thimmapuram J; Sripathi VR; Bhide KP; Fiedler E; Hayford RK; Kalavacharla VK
    Plant Cell Rep; 2017 Jan; 36(1):129-150. PubMed ID: 27812750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De novo transcriptome in roots of switchgrass (Panicum virgatum L.) reveals gene expression dynamic and act network under alkaline salt stress.
    Zhang P; Duo T; Wang F; Zhang X; Yang Z; Hu G
    BMC Genomics; 2021 Jan; 22(1):82. PubMed ID: 33509088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative transcriptomics and metabolomics reveal specialized metabolite drought stress responses in switchgrass (Panicum virgatum).
    Tiedge K; Li X; Merrill AT; Davisson D; Chen Y; Yu P; Tantillo DJ; Last RL; Zerbe P
    New Phytol; 2022 Nov; 236(4):1393-1408. PubMed ID: 36028985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long non-coding RNAs of switchgrass (Panicum virgatum L.) in multiple dehydration stresses.
    Zhang C; Tang G; Peng X; Sun F; Liu S; Xi Y
    BMC Plant Biol; 2018 May; 18(1):79. PubMed ID: 29728055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early lignin pathway enzymes and routes to chlorogenic acid in switchgrass (Panicum virgatum L.).
    Escamilla-Treviño LL; Shen H; Hernandez T; Yin Y; Xu Y; Dixon RA
    Plant Mol Biol; 2014 Mar; 84(4-5):565-76. PubMed ID: 24190737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptomic analysis of ncRNAs and mRNAs interactions during drought stress in switchgrass.
    Guan C; Li W; Wang G; Yang R; Zhang J; Zhang J; Wu B; Gao R; Jia C
    Plant Sci; 2024 Feb; 339():111930. PubMed ID: 38007196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome analysis of Cd-treated switchgrass root revealed novel transcripts and the importance of HSF/HSP network in switchgrass Cd tolerance.
    Song G; Yuan S; Wen X; Xie Z; Lou L; Hu B; Cai Q; Xu B
    Plant Cell Rep; 2018 Nov; 37(11):1485-1497. PubMed ID: 30003312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput deep sequencing shows that microRNAs play important roles in switchgrass responses to drought and salinity stress.
    Xie F; Stewart CN; Taki FA; He Q; Liu H; Zhang B
    Plant Biotechnol J; 2014 Apr; 12(3):354-66. PubMed ID: 24283289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene regulatory networks for lignin biosynthesis in switchgrass (Panicum virgatum).
    Rao X; Chen X; Shen H; Ma Q; Li G; Tang Y; Pena M; York W; Frazier TP; Lenaghan S; Xiao X; Chen F; Dixon RA
    Plant Biotechnol J; 2019 Mar; 17(3):580-593. PubMed ID: 30133139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptomic analysis reveals vacuolar Na
    Huang Y; Cui X; Cen H; Wang K; Zhang Y
    BMC Plant Biol; 2018 Apr; 18(1):57. PubMed ID: 29631566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide identification of histone methylation (H3K9
    Ayyappan V; Sripathi VR; Kalavacharla VK; Saha MC; Thimmapuram J; Bhide KP; Fiedler E
    BMC Genomics; 2019 Aug; 20(1):667. PubMed ID: 31438854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating transcriptional, metabolomic, and physiological responses to drought stress and recovery in switchgrass (Panicum virgatum L.).
    Meyer E; Aspinwall MJ; Lowry DB; Palacio-Mejía JD; Logan TL; Fay PA; Juenger TE
    BMC Genomics; 2014 Jun; 15(1):527. PubMed ID: 24964784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative transcriptome study of switchgrass (
    Chen P; Chen J; Sun M; Yan H; Feng G; Wu B; Zhang X; Wang X; Huang L
    Biotechnol Biofuels; 2020; 13():170. PubMed ID: 33072185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of drought- and heat-responsive microRNAs in switchgrass.
    Hivrale V; Zheng Y; Puli COR; Jagadeeswaran G; Gowdu K; Kakani VG; Barakat A; Sunkar R
    Plant Sci; 2016 Jan; 242():214-223. PubMed ID: 26566839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential Defense Responses of Upland and Lowland Switchgrass Cultivars to a Cereal Aphid Pest.
    Pingault L; Palmer NA; Koch KG; Heng-Moss T; Bradshaw JD; Seravalli J; Twigg P; Louis J; Sarath G
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33120946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MicroRNA expression analysis in the cellulosic biofuel crop switchgrass (Panicum virgatum) under abiotic stress.
    Sun G; Stewart CN; Xiao P; Zhang B
    PLoS One; 2012; 7(3):e32017. PubMed ID: 22470418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional and physiological data reveal the dehydration memory behavior in switchgrass (
    Zhang C; Peng X; Guo X; Tang G; Sun F; Liu S; Xi Y
    Biotechnol Biofuels; 2018; 11():91. PubMed ID: 29619087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.