These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35260353)

  • 1. Interleukin-1 beta is a potential mediator of airway nitric oxide deficiency in cystic fibrosis.
    Nissen G; Ben-Meir E; Kopp M; Shaw M; Ratjen F; Grasemann H
    J Cyst Fibros; 2022 Jul; 21(4):623-625. PubMed ID: 35260353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of ivacaftor therapy on exhaled nitric oxide in patients with cystic fibrosis.
    Grasemann H; Gonska T; Avolio J; Klingel M; Tullis E; Ratjen F
    J Cyst Fibros; 2015 Nov; 14(6):727-32. PubMed ID: 26168933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Restoring Cystic Fibrosis Transmembrane Conductance Regulator Function Reduces Airway Bacteria and Inflammation in People with Cystic Fibrosis and Chronic Lung Infections.
    Hisert KB; Heltshe SL; Pope C; Jorth P; Wu X; Edwards RM; Radey M; Accurso FJ; Wolter DJ; Cooke G; Adam RJ; Carter S; Grogan B; Launspach JL; Donnelly SC; Gallagher CG; Bruce JE; Stoltz DA; Welsh MJ; Hoffman LR; McKone EF; Singh PK
    Am J Respir Crit Care Med; 2017 Jun; 195(12):1617-1628. PubMed ID: 28222269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ORKAMBI-Mediated Rescue of Mucociliary Clearance in Cystic Fibrosis Primary Respiratory Cultures Is Enhanced by Arginine Uptake, Arginase Inhibition, and Promotion of Nitric Oxide Signaling to the Cystic Fibrosis Transmembrane Conductance Regulator Channel.
    Wu YS; Jiang J; Ahmadi S; Lew A; Laselva O; Xia S; Bartlett C; Ip W; Wellhauser L; Ouyang H; Gonska T; Moraes TJ; Bear CE
    Mol Pharmacol; 2019 Oct; 96(4):515-525. PubMed ID: 31427400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Lumacaftor-Ivacaftor on Lung Clearance Index, Magnetic Resonance Imaging, and Airway Microbiome in Phe508del Homozygous Patients with Cystic Fibrosis.
    Graeber SY; Boutin S; Wielpütz MO; Joachim C; Frey DL; Wege S; Sommerburg O; Kauczor HU; Stahl M; Dalpke AH; Mall MA
    Ann Am Thorac Soc; 2021 Jun; 18(6):971-980. PubMed ID: 33600745
    [No Abstract]   [Full Text] [Related]  

  • 6. Changes in Airway Microbiome and Inflammation with Ivacaftor Treatment in Patients with Cystic Fibrosis and the G551D Mutation.
    Harris JK; Wagner BD; Zemanick ET; Robertson CE; Stevens MJ; Heltshe SL; Rowe SM; Sagel SD
    Ann Am Thorac Soc; 2020 Feb; 17(2):212-220. PubMed ID: 31604026
    [No Abstract]   [Full Text] [Related]  

  • 7. Different CFTR modulator combinations downregulate inflammation differently in cystic fibrosis.
    Jarosz-Griffiths HH; Scambler T; Wong CH; Lara-Reyna S; Holbrook J; Martinon F; Savic S; Whitaker P; Etherington C; Spoletini G; Clifton I; Mehta A; McDermott MF; Peckham D
    Elife; 2020 Mar; 9():. PubMed ID: 32118580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Pulmonary metabolism of nitric oxide (NO) in patients with cystic fibrosis].
    Grasemann H; Ratjen F
    Pneumologie; 2002 Jun; 56(6):376-81. PubMed ID: 12063621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short-chain fatty acids affect cystic fibrosis airway inflammation and bacterial growth.
    Ghorbani P; Santhakumar P; Hu Q; Djiadeu P; Wolever TM; Palaniyar N; Grasemann H
    Eur Respir J; 2015 Oct; 46(4):1033-45. PubMed ID: 26022954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concentration of fractional excretion of nitric oxide (FENO): A potential airway biomarker of restored CFTR function.
    Kotha K; Szczesniak RD; Naren AP; Fenchel MC; Duan LL; McPhail GL; Clancy JP
    J Cyst Fibros; 2015 Nov; 14(6):733-40. PubMed ID: 26210165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potentiators (specific therapies for class III and IV mutations) for cystic fibrosis.
    Skilton M; Krishan A; Patel S; Sinha IP; Southern KW
    Cochrane Database Syst Rev; 2019 Jan; 1(1):CD009841. PubMed ID: 30616300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective up-regulation of chemokine IL-8 expression in cystic fibrosis bronchial gland cells in vivo and in vitro.
    Tabary O; Zahm JM; Hinnrasky J; Couetil JP; Cornillet P; Guenounou M; Gaillard D; Puchelle E; Jacquot J
    Am J Pathol; 1998 Sep; 153(3):921-30. PubMed ID: 9736040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ivacaftor-induced sweat chloride reductions correlate with increases in airway surface liquid pH in cystic fibrosis.
    Abou Alaiwa MH; Launspach JL; Grogan B; Carter S; Zabner J; Stoltz DA; Singh PK; McKone EF; Welsh MJ
    JCI Insight; 2018 Aug; 3(15):. PubMed ID: 30089726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IL-17 primes airway epithelial cells lacking functional Cystic Fibrosis Transmembrane conductance Regulator (CFTR) to increase NOD1 responses.
    Roussel L; Rousseau S
    Biochem Biophys Res Commun; 2010 Jan; 391(1):505-9. PubMed ID: 19931506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric dimethylarginine contributes to airway nitric oxide deficiency in patients with cystic fibrosis.
    Grasemann H; Al-Saleh S; Scott JA; Shehnaz D; Mehl A; Amin R; Rafii M; Pencharz P; Belik J; Ratjen F
    Am J Respir Crit Care Med; 2011 May; 183(10):1363-8. PubMed ID: 21278301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lumacaftor and ivacaftor in the management of patients with cystic fibrosis: current evidence and future prospects.
    Kuk K; Taylor-Cousar JL
    Ther Adv Respir Dis; 2015 Dec; 9(6):313-26. PubMed ID: 26416827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proresolving Action of Docosahexaenoic Acid Monoglyceride in Lung Inflammatory Models Related to Cystic Fibrosis.
    Morin C; Cantin AM; Rousseau É; Sirois M; Sirois C; Rizcallah E; Fortin S
    Am J Respir Cell Mol Biol; 2015 Oct; 53(4):574-83. PubMed ID: 25781052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Augmentation of Cystic Fibrosis Transmembrane Conductance Regulator Function in Human Bronchial Epithelial Cells via SLC6A14-Dependent Amino Acid Uptake. Implications for Treatment of Cystic Fibrosis.
    Ahmadi S; Wu YS; Li M; Ip W; Lloyd-Kuzik A; Di Paola M; Du K; Xia S; Lew A; Bozoky Z; Forman-Kay J; Bear CE; Gonska T
    Am J Respir Cell Mol Biol; 2019 Dec; 61(6):755-764. PubMed ID: 31189070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interleukin-17 Pathophysiology and Therapeutic Intervention in Cystic Fibrosis Lung Infection and Inflammation.
    Hsu D; Taylor P; Fletcher D; van Heeckeren R; Eastman J; van Heeckeren A; Davis P; Chmiel JF; Pearlman E; Bonfield TL
    Infect Immun; 2016 Sep; 84(9):2410-21. PubMed ID: 27271746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trikafta Rescues CFTR and Lowers Monocyte P2X7R-induced Inflammasome Activation in Cystic Fibrosis.
    Gabillard-Lefort C; Casey M; Glasgow AMA; Boland F; Kerr O; Marron E; Lyons AM; Gunaratnam C; McElvaney NG; Reeves EP
    Am J Respir Crit Care Med; 2022 Apr; 205(7):783-794. PubMed ID: 35021019
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.