BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 35260655)

  • 1. In-situ neutron diffraction study of lattice deformation behaviour of commercially pure titanium at cryogenic temperature.
    Lee MS; Kawasaki T; Yamashita T; Harjo S; Hyun YT; Jeong Y; Jun TS
    Sci Rep; 2022 Mar; 12(1):3719. PubMed ID: 35260655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strength-Ductility Synergy in a Metastable β Titanium Alloy by Stress Induced Interfacial Twin Boundary ω Phase at Cryogenic Temperatures.
    Li Y; Liao Z; Zhang W; Wu Z; Zhou C
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33113977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Strength and Plasticity of CoCrNiAl
    Gu XH; Meng YQ; Chang H; Bai TX; Ma SG; Zhang YQ; Song WD; Li ZQ
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature Dependence of Deformation Behaviors in High Manganese Austenitic Steel for Cryogenic Applications.
    Chen J; Li S; Ren JK; Liu ZY
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tensile Deformation Behaviors of Pure Ti with Different Grain Sizes under Wide-Range of Strain Rate.
    Deguchi M; Yamasaki S; Mitsuhara M; Nakashima H; Tsukamoto G; Kunieda T
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous Improvement of Yield Strength and Ductility at Cryogenic Temperature by Gradient Structure in 304 Stainless Steel.
    Qin S; Yang M; Yuan F; Wu X
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics.
    Wehrenberg CE; McGonegle D; Bolme C; Higginbotham A; Lazicki A; Lee HJ; Nagler B; Park HS; Remington BA; Rudd RE; Sliwa M; Suggit M; Swift D; Tavella F; Zepeda-Ruiz L; Wark JS
    Nature; 2017 Oct; 550(7677):496-499. PubMed ID: 29072261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a load frame for neutron diffraction and fluorescent thermometry at cryogenic temperature.
    Yang J; Li J; Liu W; Li Y; Huang Y; Zhou J; Zhang X
    Rev Sci Instrum; 2022 Jul; 93(7):073904. PubMed ID: 35922284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tensile deformation mechanisms of an in-situ Ti-based metallic glass matrix composite at cryogenic temperature.
    Bai J; Li JS; Qiao JW; Wang J; Feng R; Kou HC; Liaw PK
    Sci Rep; 2016 Aug; 6():32287. PubMed ID: 27576728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy.
    Jo YH; Jung S; Choi WM; Sohn SS; Kim HS; Lee BJ; Kim NJ; Lee S
    Nat Commun; 2017 Jun; 8():15719. PubMed ID: 28604656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperative deformation in high-entropy alloys at ultralow temperatures.
    Naeem M; He H; Zhang F; Huang H; Harjo S; Kawasaki T; Wang B; Lan S; Wu Z; Wang F; Wu Y; Lu Z; Zhang Z; Liu CT; Wang XL
    Sci Adv; 2020 Mar; 6(13):eaax4002. PubMed ID: 32258390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Pretreatment and Cryogenic Temperatures on Mechanical Properties and Microstructure of Al-Cu-Li Alloy.
    Wang C; Zhang J; Yi Y; Zhu C
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34500959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructural Evolution and Mechanical Properties of Non-Equiatomic (CoNi)
    Kim YS; Chae H; Huang EW; Jain J; Harjo S; Kawasaki T; Hong SI; Lee SY
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35207845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure Determination of Er Doped Ti-Al-Nb Alloy by Neutron Diffraction Analysis.
    Ke Y; Tao J; Duan H
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31336835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Datasets for multi-scale diffraction analysis (synchrotron XRD and EBSD) of twinning-detwinning during tensile-compressive deformation of AZ31B magnesium alloy samples.
    Zhang H; Jérusalem A; Salvati E; Papadaki C; Fong KS; Song X; Korsunsky AM
    Data Brief; 2019 Oct; 26():104423. PubMed ID: 31534992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Twinning-induced strain hardening in dual-phase FeCoCrNiAl
    Bönisch M; Wu Y; Sehitoglu H
    Sci Rep; 2018 Jul; 8(1):10663. PubMed ID: 30006547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superplasticity of Ti-6Al-4V Titanium Alloy: Microstructure Evolution and Constitutive Modelling.
    Mosleh AO; Mikhaylovskaya AV; Kotov AD; Kwame JS; Aksenov SA
    Materials (Basel); 2019 May; 12(11):. PubMed ID: 31151181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deformation-activated recrystallization twin: New twinning path in pure aluminum enabled by cryogenic and rapid compression.
    Liu M; Wang P; Lu G; Huang CY; You Z; Wang CH; Yen HW
    iScience; 2022 May; 25(5):104248. PubMed ID: 35573191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of cryogenic treatment on wear resistance of Ti-6Al-4V alloy for biomedical applications.
    Gu K; Wang J; Zhou Y
    J Mech Behav Biomed Mater; 2014 Feb; 30():131-9. PubMed ID: 24287307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-dependent elastic anisotropy and mesoscale deformation in a nanostructured ferritic alloy.
    Stoica GM; Stoica AD; Miller MK; Ma D
    Nat Commun; 2014 Oct; 5():5178. PubMed ID: 25300893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.