These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 35260661)

  • 1. A self-powered wireless motion sensor based on a high-surface area reverse electrowetting-on-dielectric energy harvester.
    Tasneem NT; Biswas DK; Adhikari PR; Gunti A; Patwary AB; Reid RC; Mahbub I
    Sci Rep; 2022 Mar; 12(1):3782. PubMed ID: 35260661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advancing Reverse Electrowetting-on-Dielectric from Planar to Rough Surface Electrodes for High Power Density Energy Harvesting.
    Adhikari PR; Patwary AB; Kakaraparty K; Gunti A; Reid RC; Mahbub I
    Energy Technol (Weinh); 2022 Mar; 10(3):2100867. PubMed ID: 35860308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrode and electrolyte configurations for low frequency motion energy harvesting based on reverse electrowetting.
    Adhikari PR; Tasneem NT; Reid RC; Mahbub I
    Sci Rep; 2021 Mar; 11(1):5030. PubMed ID: 33658583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel wireless power and data transmission AC to DC converter for an implantable device.
    Liu JY; Tang KT
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1875-8. PubMed ID: 24110077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A shoe-embedded piezoelectric energy harvester for wearable sensors.
    Zhao J; You Z
    Sensors (Basel); 2014 Jul; 14(7):12497-510. PubMed ID: 25019634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-Voltage DC-DC Converter for IoT and On-Chip Energy Harvester Applications.
    Potocny M; Kovac M; Arbet D; Sovcik M; Nagy L; Stopjakova V; Ravasz R
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A feed-forward controlled AC-DC boost converter for biomedical implants.
    Jiang H; Lan D; Lin D; Zhang J; Liou S; Shahnasser H; Shen M; Harrison M; Roy S
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1675-8. PubMed ID: 23366230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A spiral-shaped harvester with an improved harvesting element and an adaptive storage circuit.
    Hu H; Xue H; Hu Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jun; 54(6):1177-87. PubMed ID: 17571816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear interface between the piezoelectric harvesting structure and the modulating circuit of an energy harvester with a real storage battery.
    Hu Y; Xue H; Hu T; Hu H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jan; 55(1):148-60. PubMed ID: 18334321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust reverse-electrowetting based energy harvesting on slippery surface.
    Cheng H; Shao W; Jin J; Wu J; Zhao M; Tang B; Zhou G
    RSC Adv; 2023 Oct; 13(45):31659-31666. PubMed ID: 37908647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Capacitive DC-DC Boost Converter with Gate Bias Boosting and Dynamic Body Biasing for an RF Energy Harvesting System.
    Jung J; Kwon I
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Powered Wireless Sensor Using a Pressure Fluctuation Energy Harvester.
    Aranda JJ; Bader S; Oelmann B
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy harvesting from human motion: materials and techniques.
    Invernizzi F; Dulio S; Patrini M; Guizzetti G; Mustarelli P
    Chem Soc Rev; 2016 Oct; 45(20):5455-5473. PubMed ID: 27398416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Bootstrapped Comparator-Switched Active Rectifying Circuit for Wirelessly Powered Integrated Miniaturized Energy Sensing Systems.
    Gong CA; Li SW; Shiue MT
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31671602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrowetting Using a Microfluidic Kelvin Water Dropper.
    Yazdanshenas E; Tang Q; Zhang X
    Micromachines (Basel); 2018 Feb; 9(3):. PubMed ID: 30424026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electric Power Self-Supply Module for WSN Sensor Node Based on MEMS Vibration Energy Harvester.
    Zhang W; Dong Y; Tan Y; Zhang M; Qian X; Wang X
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of a High-Efficiency DC-DC Boost Converter for RF Energy Harvesting IoT Sensors.
    Kim J; Kwon I
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast and Accurate Approach to RF-DC Conversion Efficiency Estimation for Multi-Tone Signals.
    Eidaks J; Kusnins R; Babajans R; Cirjulina D; Semenjako J; Litvinenko A
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behavioral Modeling of DC/DC Converters in Self-Powered Sensor Systems with Modelica.
    Kokert J; Reindl LM; Rupitsch SJ
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Highly Efficient RF-DC Converter for Energy Harvesting Applications Using a Threshold Voltage Cancellation Scheme.
    Basim M; Khan D; Ain QU; Shehzad K; Shah SAA; Jang BG; Pu YG; Yoo JM; Kim JT; Lee KY
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.