BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 35260876)

  • 1. Screening and identification of a novel antidiabetic peptide from collagen hydrolysates of Chinese giant salamander skin: network pharmacology, inhibition kinetics and protection of IR-HepG2 cells.
    Zhou M; Ren G; Zhang B; Ma F; Fan J; Qiu Z
    Food Funct; 2022 Mar; 13(6):3329-3342. PubMed ID: 35260876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural Triterpenoids Isolated from Akebia trifoliata Stem Explants Exert a Hypoglycemic Effect via α-Glucosidase Inhibition and Glucose Uptake Stimulation in Insulin-Resistant HepG2 Cells.
    Bian G; Yang J; Elango J; Wu W; Bao B; Bao C
    Chem Biodivers; 2021 May; 18(5):e2001030. PubMed ID: 33779055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Didymin, a dietary citrus flavonoid exhibits anti-diabetic complications and promotes glucose uptake through the activation of PI3K/Akt signaling pathway in insulin-resistant HepG2 cells.
    Ali MY; Zaib S; Rahman MM; Jannat S; Iqbal J; Park SK; Chang MS
    Chem Biol Interact; 2019 May; 305():180-194. PubMed ID: 30928401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Novel Peptides in Distillers' Grains as Antioxidants, α-Glucosidase Inhibitors, and Insulin Sensitizers: In Silico and In Vitro Evaluation.
    Ding L; Zheng X; Zhao L; Cai S
    Nutrients; 2024 Apr; 16(9):. PubMed ID: 38732526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of the Mechanism of Astragali Radix in Treating Type 2 Diabetes Mellitus and Its Renal Protection Based on Enzyme Activity, Network Pharmacology, and Experimental Verification.
    Li C; Zhang K; Liu L; Shen J; Wang Y; Tan Y; Feng X; Liu W; Zhang H; Sun J
    Molecules; 2023 Dec; 28(24):. PubMed ID: 38138520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the synergistic and complementary effects of berberine and paeoniflorin in the treatment of type 2 diabetes mellitus by network pharmacology.
    Zhang L; Han L; Ma J; Wu T; Wei Y; Zhao L; Tong X
    Eur J Pharmacol; 2022 Mar; 919():174769. PubMed ID: 35151646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A bioinformatics and transcriptomics based investigation reveals an inhibitory role of Huanglian-Renshen-Decoction on hepatic glucose production of T2DM mice via PI3K/Akt/FoxO1 signaling pathway.
    Wu F; Shao Q; Xia Q; Hu M; Zhao Y; Wang D; Fang K; Xu L; Zou X; Chen Z; Chen G; Lu F
    Phytomedicine; 2021 Mar; 83():153487. PubMed ID: 33636476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mechanism of Fufang Zhenzhu Tiaozhi capsule in the treatment of type 2 diabetes mellitus with nonalcoholic fatty liver disease based on network pharmacology and validation in minipigs.
    Wang H; Tan H; Zhan W; Song L; Zhang D; Chen X; Lin Z; Wang W; Yang Y; Wang L; Bei W; Guo J
    J Ethnopharmacol; 2021 Jun; 274():114056. PubMed ID: 33771638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anti-Diabetic Activity of 2,3,6-Tribromo-4,5-Dihydroxybenzyl Derivatives from
    Paudel P; Seong SH; Park HJ; Jung HA; Choi JS
    Mar Drugs; 2019 Mar; 17(3):. PubMed ID: 30875760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Network pharmacology-based elucidation of bioactive compounds and experimental exploration of antidiabetic mechanisms of Hydrolea zeylanica.
    Swain SK; Dash UC; Kanhar S; Sahoo AK
    Cell Signal; 2024 Feb; 114():110999. PubMed ID: 38052370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel tetrahydrobenzo[b]thiophen-2-yl)urea derivatives as novel α-glucosidase inhibitors: Synthesis, kinetics study, molecular docking, and in vivo anti-hyperglycemic evaluation.
    Xie HX; Zhang J; Li Y; Zhang JH; Liu SK; Zhang J; Zheng H; Hao GZ; Zhu KK; Jiang CS
    Bioorg Chem; 2021 Oct; 115():105236. PubMed ID: 34411978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. α-Methyl artoflavanocoumarin from Juniperus chinensis exerts anti-diabetic effects by inhibiting PTP1B and activating the PI3K/Akt signaling pathway in insulin-resistant HepG2 cells.
    Jung HJ; Seong SH; Ali MY; Min BS; Jung HA; Choi JS
    Arch Pharm Res; 2017 Dec; 40(12):1403-1413. PubMed ID: 29177868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The protective effect of silk fibroin on high glucose induced insulin resistance in HepG2 cells.
    Yang Q; Zhu Z; Wang L; Xia H; Mao J; Wu J; Kato K; Li H; Zhang J; Yamanaka K; An Y
    Environ Toxicol Pharmacol; 2019 Jul; 69():66-71. PubMed ID: 30959417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and synthesis of novel xanthone-triazole derivatives as potential antidiabetic agents: α-Glucosidase inhibition and glucose uptake promotion.
    Ye GJ; Lan T; Huang ZX; Cheng XN; Cai CY; Ding SM; Xie ML; Wang B
    Eur J Med Chem; 2019 Sep; 177():362-373. PubMed ID: 31158750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of Novel Oligopeptides from Rapeseed Napin (
    Yao M; Xu F; Yao Y; Wang H; Ju X; Wang L
    J Agric Food Chem; 2022 Oct; 70(39):12418-12429. PubMed ID: 36129441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitory evaluation of
    Zabidi NA; Ishak NA; Hamid M; Ashari SE; Mohammad Latif MA
    J Enzyme Inhib Med Chem; 2021 Dec; 36(1):109-121. PubMed ID: 33249946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative evaluation for phytochemical composition and regulation of blood glucose, hepatic oxidative stress and insulin resistance in mice and HepG2 models of four typical Chinese dark teas.
    Zhu J; Yu C; Zhou H; Wei X; Wang Y
    J Sci Food Agric; 2021 Dec; 101(15):6563-6577. PubMed ID: 34018615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promising Inhibitory Effects of Anthraquinones, Naphthopyrone, and Naphthalene Glycosides, from Cassia obtusifolia on α-Glucosidase and Human Protein Tyrosine Phosphatases 1B.
    Jung HA; Ali MY; Choi JS
    Molecules; 2016 Dec; 22(1):. PubMed ID: 28035984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitory effect of saccharides and phenolic compounds from maize silks on intestinal α-glucosidases.
    Alvarado-Díaz CS; Gutiérrez-Méndez N; Mendoza-López ML; Rodríguez-Rodríguez MZ; Quintero-Ramos A; Landeros-Martínez LL; Rodríguez-Valdez LM; Rodríguez-Figueroa JC; Pérez-Vega S; Salmeron-Ochoa I; Leal-Ramos MY
    J Food Biochem; 2019 Jul; 43(7):e12896. PubMed ID: 31353692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Potential Mechanisms of Rk1 Combination with Rg5 in the Treatment of Type II Diabetes Mellitus by Integrating Network Pharmacology and Experimental Validation.
    Liu Y; Zhang J; An C; Liu C; Zhang Q; Ding H; Ma S; Xue W
    Int J Mol Sci; 2023 Oct; 24(19):. PubMed ID: 37834276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.