BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 35261149)

  • 1. Molecular Design of Covalent Triazine Frameworks with Anisotropic Charge Migration for Photocatalytic Hydrogen Production.
    Lan ZA; Chi X; Wu M; Zhang X; Chen X; Zhang G; Wang X
    Small; 2022 Apr; 18(16):e2200129. PubMed ID: 35261149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulating the Content of Donor Unit in Donor-Acceptor Covalent Triazine Frameworks for Promoting Photocatalytic H
    He W; Zhou J; Xu W; Li C; Li J; Wang N
    ChemSusChem; 2024 Jan; 17(1):e202301175. PubMed ID: 37724486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Heterostructures of Covalent Triazine Frameworks for Enhanced Photocatalytic Hydrogen Production.
    Huang W; He Q; Hu Y; Li Y
    Angew Chem Int Ed Engl; 2019 Jun; 58(26):8676-8680. PubMed ID: 30882957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Nitrogen Atom Introduction on the Photocatalytic Hydrogen Evolution Activity of Covalent Triazine Frameworks: Experimental and Theoretical Study.
    Han X; Zhao F; Shang Q; Zhao J; Zhong X; Zhang J
    ChemSusChem; 2022 Sep; 15(18):e202200828. PubMed ID: 35869028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of Covalent Triazine-Based Frameworks for Photocatalytic Hydrogen Generation.
    Xie J; Fang Z; Wang H
    Polymers (Basel); 2022 Mar; 14(7):. PubMed ID: 35406237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution on Phosphorus-Doped Covalent Triazine-Based Frameworks.
    Cheng Z; Fang W; Zhao T; Fang S; Bi J; Liang S; Li L; Yu Y; Wu L
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41415-41421. PubMed ID: 30383354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Covalent Triazine-Based Framework Consisting of Donor-Acceptor Dyads for Visible-Light-Driven Photocatalytic CO
    Zhong H; Hong Z; Yang C; Li L; Xu Y; Wang X; Wang R
    ChemSusChem; 2019 Oct; 12(19):4493-4499. PubMed ID: 31379104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MoS
    Jiang Q; Sun L; Bi J; Liang S; Li L; Yu Y; Wu L
    ChemSusChem; 2018 Mar; 11(6):1108-1113. PubMed ID: 29405652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increasing Donor-Acceptor Interactions and Particle Dispersibility of Covalent Triazine Frameworks for Higher Crystallinity and Enhanced Photocatalytic Activity.
    Wang H; Shi L; Qu Z; Zhang L; Wang X; Wang Y; Liu S; Ma H; Guo Z
    ACS Appl Mater Interfaces; 2024 Jan; 16(2):2296-2308. PubMed ID: 38189244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Band Gap Tuning of Covalent Triazine-Based Frameworks through Iron Doping for Visible-Light-Driven Photocatalytic Hydrogen Evolution.
    Gao S; Zhang P; Huang G; Chen Q; Bi J; Wu L
    ChemSusChem; 2021 Sep; 14(18):3850-3857. PubMed ID: 34347379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversing electron transfer in a covalent triazine framework for efficient photocatalytic hydrogen evolution.
    Zhang L; Zhang Y; Huang X; Bi Y
    Chem Sci; 2022 Jul; 13(27):8074-8079. PubMed ID: 35919433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene Oxide-Assisted Covalent Triazine Framework for Boosting Photocatalytic H
    Liu C; Wang YC; Yang Q; Li XY; Yi F; Liu KW; Cao HM; Wang CJ; Yan HJ
    Chemistry; 2021 Sep; 27(51):13059-13066. PubMed ID: 34190368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalent Triazine Framework Films through In-Situ Growth for Photocatalytic Hydrogen Evolution.
    Guo Y; Hu X; Sun R; Wang X; Tan B
    ChemSusChem; 2023 Oct; 16(20):e202300759. PubMed ID: 37365972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Configurational Isomerism of Pyridine π Bridge in Donor-π Bridge-Acceptor Type Covalent Triazine Frameworks on The Photocatalytic Performance.
    Xiong J; Li X; Chen M; Shi Q; Jiang Y; Feng Y; Zhang B
    Chem Asian J; 2024 Jun; ():e202400556. PubMed ID: 38937267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitatively regulating the ketone structure of triazine-based covalent organic frameworks for efficient visible-light photocatalytic degradation of organic pollutants: Tunable performance and mechanisms.
    Li X; Zhang L; Niu S; Dong Z; Lyu C
    J Hazard Mater; 2023 Feb; 444(Pt A):130366. PubMed ID: 36434920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalent Triazine Frameworks via a Low-Temperature Polycondensation Approach.
    Wang K; Yang LM; Wang X; Guo L; Cheng G; Zhang C; Jin S; Tan B; Cooper A
    Angew Chem Int Ed Engl; 2017 Nov; 56(45):14149-14153. PubMed ID: 28926688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient photocatalytic hydrogen evolution: Linkage units engineering in triazine-based conjugated porous polymers.
    Zhang S; Zhao F; Yasin G; Dong Y; Zhao J; Guo Y; Tsiakaras P; Zhao J
    J Colloid Interface Sci; 2023 May; 637():41-54. PubMed ID: 36682117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constructing a novel family of halogen-doped covalent triazine-based frameworks as efficient metal-free photocatalysts for hydrogen production.
    Cheng Z; Zheng K; Lin G; Fang S; Li L; Bi J; Shen J; Wu L
    Nanoscale Adv; 2019 Jul; 1(7):2674-2680. PubMed ID: 36132739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling CsPbBr
    Wang Q; Wang J; Wang JC; Hu X; Bai Y; Zhong X; Li Z
    ChemSusChem; 2021 Feb; 14(4):1131-1139. PubMed ID: 33411408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Schottky Junction and D-A
    Wang L; Wang L; Xu Y; Sun G; Nie W; Liu L; Kong D; Pan Y; Zhang Y; Wang H; Huang Y; Liu Z; Ren H; Wei T; Himeda Y; Fan Z
    Adv Mater; 2024 Feb; 36(5):e2309376. PubMed ID: 37914405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.