BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 35261171)

  • 1. Acute Megakaryocytic Leukemia arising from Megakaryocyte/Erythroid Progenitor (MEP)-like cell.
    Chan SSW; Lee SY
    Int J Lab Hematol; 2022 Oct; 44(5):808-811. PubMed ID: 35261171
    [No Abstract]   [Full Text] [Related]  

  • 2. Single-cell profiling of human megakaryocyte-erythroid progenitors identifies distinct megakaryocyte and erythroid differentiation pathways.
    Psaila B; Barkas N; Iskander D; Roy A; Anderson S; Ashley N; Caputo VS; Lichtenberg J; Loaiza S; Bodine DM; Karadimitris A; Mead AJ; Roberts I
    Genome Biol; 2016 May; 17():83. PubMed ID: 27142433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MEIS1 regulates early erythroid and megakaryocytic cell fate.
    Zeddies S; Jansen SB; di Summa F; Geerts D; Zwaginga JJ; van der Schoot CE; von Lindern M; Thijssen-Timmer DC
    Haematologica; 2014 Oct; 99(10):1555-64. PubMed ID: 25107888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current understanding of human megakaryocytic-erythroid progenitors and their fate determinants.
    Kwon N; Thompson EN; Mayday MY; Scanlon V; Lu YC; Krause DS
    Curr Opin Hematol; 2021 Jan; 28(1):28-35. PubMed ID: 33186151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A common bipotent progenitor generates the erythroid and megakaryocyte lineages in embryonic stem cell-derived primitive hematopoiesis.
    Klimchenko O; Mori M; Distefano A; Langlois T; Larbret F; Lecluse Y; Feraud O; Vainchenker W; Norol F; Debili N
    Blood; 2009 Aug; 114(8):1506-17. PubMed ID: 19478046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RUNX1 and GATA-1 coexpression and cooperation in megakaryocytic differentiation.
    Elagib KE; Racke FK; Mogass M; Khetawat R; Delehanty LL; Goldfarb AN
    Blood; 2003 Jun; 101(11):4333-41. PubMed ID: 12576332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Notch Stimulates Both Self-Renewal and Lineage Plasticity in a Subset of Murine CD9High Committed Megakaryocytic Progenitors.
    Weiss-Gayet M; Starck J; Chaabouni A; Chazaud B; Morlé F
    PLoS One; 2016; 11(4):e0153860. PubMed ID: 27089435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RUNX1 represses the erythroid gene expression program during megakaryocytic differentiation.
    Kuvardina ON; Herglotz J; Kolodziej S; Kohrs N; Herkt S; Wojcik B; Oellerich T; Corso J; Behrens K; Kumar A; Hussong H; Urlaub H; Koch J; Serve H; Bonig H; Stocking C; Rieger MA; Lausen J
    Blood; 2015 Jun; 125(23):3570-9. PubMed ID: 25911237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concise Review: Bipotent Megakaryocytic-Erythroid Progenitors: Concepts and Controversies.
    Xavier-Ferrucio J; Krause DS
    Stem Cells; 2018 Aug; 36(8):1138-1145. PubMed ID: 29658164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcription factor networks in erythroid cell and megakaryocyte development.
    Doré LC; Crispino JD
    Blood; 2011 Jul; 118(2):231-9. PubMed ID: 21622645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MicroRNAs in erythroid and megakaryocytic differentiation and megakaryocyte-erythroid progenitor lineage commitment.
    Zhang L; Sankaran VG; Lodish HF
    Leukemia; 2012 Nov; 26(11):2310-6. PubMed ID: 22617791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Megakaryocyte-erythroid lineage promiscuity in EKLF null mouse blood.
    Tallack MR; Perkins AC
    Haematologica; 2010 Jan; 95(1):144-7. PubMed ID: 19850899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of erythroid-specific genes in megakaryoblastic disorders.
    Ito E; Kasai M; Toki T; Arai K; Yokoyama M
    Leuk Lymphoma; 1996 Nov; 23(5-6):545-50. PubMed ID: 9031085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of p53 in megakaryocyte differentiation and the megakaryocytic leukemias of Down syndrome.
    Malkin D; Brown EJ; Zipursky A
    Cancer Genet Cytogenet; 2000 Jan; 116(1):1-5. PubMed ID: 10616523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retroviral mediated gene transfer in megakaryocytic cell lines.
    Kiffmeyer WR; Stambrook PJ; Lieberman MA
    In Vitro Cell Dev Biol Anim; 1994 Nov; 30A(11):803-9. PubMed ID: 7881634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of erythroid-specific genes in acute megakaryoblastic leukaemia and transient myeloproliferative disorder in Down's syndrome.
    Ito E; Kasai M; Hayashi Y; Toki T; Arai K; Yokoyama S; Kato K; Tachibana N; Yamamoto M; Yokoyama M
    Br J Haematol; 1995 Jul; 90(3):607-14. PubMed ID: 7647001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of GM-CSF receptor beta-subunit and interleukin-6 receptor mRNA expression in a human megakaryocytic leukemia cell line.
    Yasunaga M; Ryo R; Yamaguchi N
    Leuk Lymphoma; 1992 Nov; 8(4-5):397-403. PubMed ID: 1290964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The alpha-chemokine receptor CXCR4 is expressed on the megakaryocytic lineage from progenitor to platelets and modulates migration and adhesion.
    Wang JF; Liu ZY; Groopman JE
    Blood; 1998 Aug; 92(3):756-64. PubMed ID: 9680341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hematopoietic stem/progenitor cell commitment to the megakaryocyte lineage.
    Woolthuis CM; Park CY
    Blood; 2016 Mar; 127(10):1242-8. PubMed ID: 26787736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential amplification of murine bipotent megakaryocytic/erythroid progenitor and precursor cells during recovery from acute and chronic erythroid stress.
    Sanchez M; Weissman IL; Pallavicini M; Valeri M; Guglielmelli P; Vannucchi AM; Migliaccio G; Migliaccio AR
    Stem Cells; 2006 Feb; 24(2):337-48. PubMed ID: 16144876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.