These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 35261241)

  • 1. Prediction of Water Distributions and Displacement at Protein-Ligand Interfaces.
    Morningstar-Kywi N; Wang K; Asbell TR; Wang Z; Giles JB; Lai J; Brill D; Sutch BT; Haworth IS
    J Chem Inf Model; 2022 Mar; 62(6):1489-1497. PubMed ID: 35261241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water Networks in Complexes between Proteins and FDA-Approved Drugs.
    Samways ML; Bruce Macdonald HE; Taylor RD; Essex JW
    J Chem Inf Model; 2023 Jan; 63(1):387-396. PubMed ID: 36469670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting conserved water-mediated and polar ligand interactions in proteins using a K-nearest-neighbors genetic algorithm.
    Raymer ML; Sanschagrin PC; Punch WF; Venkataraman S; Goodman ED; Kuhn LA
    J Mol Biol; 1997 Jan; 265(4):445-64. PubMed ID: 9034363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling water molecules in protein-ligand docking using GOLD.
    Verdonk ML; Chessari G; Cole JC; Hartshorn MJ; Murray CW; Nissink JW; Taylor RD; Taylor R
    J Med Chem; 2005 Oct; 48(20):6504-15. PubMed ID: 16190776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of solvation sites at the interface of Src SH2 domain complexes using molecular dynamics simulations.
    Geroult S; Hooda M; Virdee S; Waksman G
    Chem Biol Drug Des; 2007 Aug; 70(2):87-99. PubMed ID: 17683370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of Ordered Water Molecules in Protein Binding Sites from Molecular Dynamics Simulations: The Impact of Ligand Binding on Hydration Networks.
    Rudling A; Orro A; Carlsson J
    J Chem Inf Model; 2018 Feb; 58(2):350-361. PubMed ID: 29308882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbohydrate-binding proteins: Dissecting ligand structures through solvent environment occupancy.
    Gauto DF; Di Lella S; Guardia CM; Estrin DA; Martí MA
    J Phys Chem B; 2009 Jun; 113(25):8717-24. PubMed ID: 19485380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic Insight into the Effects of Water Displacement and Rearrangement upon Ligand Modifications using Molecular Dynamics Simulations.
    Wahl J; Smieško M
    ChemMedChem; 2018 Jul; 13(13):1325-1335. PubMed ID: 29726604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining solvent thermodynamic profiles with functionality maps of the Hsp90 binding site to predict the displacement of water molecules.
    Haider K; Huggins DJ
    J Chem Inf Model; 2013 Oct; 53(10):2571-86. PubMed ID: 24070451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of ligand-bound water molecules in high-resolution crystal structures of protein-ligand complexes.
    Lu Y; Wang R; Yang CY; Wang S
    J Chem Inf Model; 2007; 47(2):668-75. PubMed ID: 17266298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of water molecules in protein binding sites.
    Barillari C; Taylor J; Viner R; Essex JW
    J Am Chem Soc; 2007 Mar; 129(9):2577-87. PubMed ID: 17288418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AcquaAlta: a directional approach to the solvation of ligand-protein complexes.
    Rossato G; Ernst B; Vedani A; Smiesko M
    J Chem Inf Model; 2011 Aug; 51(8):1867-81. PubMed ID: 21714532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydration properties of ligands and drugs in protein binding sites: tightly-bound, bridging water molecules and their effects and consequences on molecular design strategies.
    García-Sosa AT
    J Chem Inf Model; 2013 Jun; 53(6):1388-405. PubMed ID: 23662606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. WaterScore: a novel method for distinguishing between bound and displaceable water molecules in the crystal structure of the binding site of protein-ligand complexes.
    García-Sosa AT; Mancera RL; Dean PM
    J Mol Model; 2003 Jun; 9(3):172-82. PubMed ID: 12756610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetics of displacing water molecules from protein binding sites: consequences for ligand optimization.
    Michel J; Tirado-Rives J; Jorgensen WL
    J Am Chem Soc; 2009 Oct; 131(42):15403-11. PubMed ID: 19778066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water at biomolecular binding interfaces.
    Li Z; Lazaridis T
    Phys Chem Chem Phys; 2007 Feb; 9(5):573-81. PubMed ID: 17242738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Testing inhomogeneous solvation theory in structure-based ligand discovery.
    Balius TE; Fischer M; Stein RM; Adler TB; Nguyen CN; Cruz A; Gilson MK; Kurtzman T; Shoichet BK
    Proc Natl Acad Sci U S A; 2017 Aug; 114(33):E6839-E6846. PubMed ID: 28760952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydration in drug design. 3. Conserved water molecules at the ligand-binding sites of homologous proteins.
    Poornima CS; Dean PM
    J Comput Aided Mol Des; 1995 Dec; 9(6):521-31. PubMed ID: 8789194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AquaMMapS: An Alternative Tool to Monitor the Role of Water Molecules During Protein-Ligand Association.
    Cuzzolin A; Deganutti G; Salmaso V; Sturlese M; Moro S
    ChemMedChem; 2018 Mar; 13(6):522-531. PubMed ID: 29193885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand binding: evaluating the contribution of the water molecules network using the Fragment Molecular Orbital method.
    Lukac I; Wyatt PG; Gilbert IH; Zuccotto F
    J Comput Aided Mol Des; 2021 Oct; 35(10):1025-1036. PubMed ID: 34458939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.