These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35262786)

  • 1. Biodegradation of nitriles derived from glucosinolates in rapeseed meal by BnNIT2: a nitrilase from Brassica napus with wide substrate specificity.
    Zhang H; Zhang H; Qin X; Wang X; Wang Y; Tu T; Wang Y; Yao B; Huang H; Luo H
    Appl Microbiol Biotechnol; 2022 Apr; 106(7):2445-2454. PubMed ID: 35262786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced glucosinolate content in oilseed rape (Brassica napus L.) by random mutagenesis of BnMYB28 and BnCYP79F1 genes.
    Jhingan S; Harloff HJ; Abbadi A; Welsch C; Blümel M; Tasdemir D; Jung C
    Sci Rep; 2023 Feb; 13(1):2344. PubMed ID: 36759657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a novel nitrilase, BGC4, from Paraburkholderia graminis showing wide-spectrum substrate specificity, a potential versatile biocatalyst for the degradation of nitriles.
    Fan H; Chen L; Sun H; Wang H; Liu Q; Ren Y; Wei D
    Biotechnol Lett; 2017 Nov; 39(11):1725-1731. PubMed ID: 28762035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complex metabolism of aromatic glucosinolates in Pieris rapae caterpillars involving nitrile formation, hydroxylation, demethylation, sulfation, and host plant dependent carboxylic acid formation.
    Agerbirk N; Olsen CE; Poulsen E; Jacobsen N; Hansen PR
    Insect Biochem Mol Biol; 2010 Feb; 40(2):126-37. PubMed ID: 20079434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Could nitrile derivatives of turnip (Brassica rapa) glucosinolates be hepato- or cholangiotoxic in cattle?
    Collett MG; Stegelmeier BL; Tapper BA
    J Agric Food Chem; 2014 Jul; 62(30):7370-5. PubMed ID: 24678843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of microwave treatment on the efficacy of expeller pressing of Brassica napus rapeseed and Brassica juncea mustard seeds.
    Niu Y; Rogiewicz A; Wan C; Guo M; Huang F; Slominski BA
    J Agric Food Chem; 2015 Apr; 63(12):3078-84. PubMed ID: 25765856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extraction and characterization of glucosinolates and isothiocyanates from rape seed meal.
    Ishikawa S; Maruyama A; Yamamoto Y; Hara S
    J Oleo Sci; 2014; 63(3):303-8. PubMed ID: 24492379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sinapis phylogeny and evolution of glucosinolates and specific nitrile degrading enzymes.
    Agerbirk N; Warwick SI; Hansen PR; Olsen CE
    Phytochemistry; 2008 Dec; 69(17):2937-49. PubMed ID: 18995873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of glucosinolates in rapeseed meal and their degradation by myrosinase from rapeseed sprouts.
    Xie C; Li W; Gao R; Yan L; Wang P; Gu Z; Yang R
    Food Chem; 2022 Jul; 382():132316. PubMed ID: 35152015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of nitrilase production from Alcaligenes faecalis MTCC 10757 (IICT-A3): effect of inducers on substrate specificity.
    Nageshwar YV; Sheelu G; Shambhu RR; Muluka H; Mehdi N; Malik MS; Kamal A
    Bioprocess Biosyst Eng; 2011 Jun; 34(5):515-23. PubMed ID: 21188422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning and functional characterization of nitrilase from Fusarium proliferatum AUF-2 for detoxification of nitriles.
    Yusuf F; Rather IA; Jamwal U; Gandhi SG; Chaubey A
    Funct Integr Genomics; 2015 Jul; 15(4):413-24. PubMed ID: 25595333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of nitrilases in glucosinolate-containing plants.
    Janowitz T; Trompetter I; Piotrowski M
    Phytochemistry; 2009; 70(15-16):1680-6. PubMed ID: 19698961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic Characteristics in Meal of Black Rapeseed and Yellow-Seeded Progeny of Brassica napus-Sinapis alba Hybrids.
    Jiang J; Wang Y; Xie T; Rong H; Li A; Fang Y; Wang Y
    Molecules; 2015 Nov; 20(12):21204-13. PubMed ID: 26633322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The
    Latimer I; Chand R; Cridge B
    N Z Vet J; 2021 May; 69(3):165-173. PubMed ID: 33570481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The optimal mixing ratio of
    Park W; Lee YH; Kim KS; Cha YL; Moon YH; Song YS; Kwon DE; Lee JE
    Plant Signal Behav; 2019; 14(12):1678369. PubMed ID: 31610733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extraction, Isolation of Bioactive Compounds and Therapeutic Potential of Rapeseed (
    Tileuberdi N; Turgumbayeva A; Yeskaliyeva B; Sarsenova L; Issayeva R
    Molecules; 2022 Dec; 27(24):. PubMed ID: 36557956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering the residues on "A" surface and C-terminal region to improve thermostability of nitrilase.
    Xu Z; Cai T; Xiong N; Zou SP; Xue YP; Zheng YG
    Enzyme Microb Technol; 2018 Jun; 113():52-58. PubMed ID: 29602387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beneficial effects of Rhizopus oligosporus fermentation on reduction of glucosinolates, fibre and phytic acid in rapeseed (Brassica napus) meal.
    Vig AP; Walia A
    Bioresour Technol; 2001 Jul; 78(3):309-12. PubMed ID: 11341693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural variation and artificial selection at the BnaC2.MYB28 locus modulate Brassica napus seed glucosinolate.
    Zhou X; Zhang H; Xie Z; Liu Y; Wang P; Dai L; Zhang X; Wang Z; Wang Z; Wan L; Yang G; Hong D
    Plant Physiol; 2023 Jan; 191(1):352-368. PubMed ID: 36179100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship of Glucosinolate Thermal Degradation and Roasted Rapeseed Oil Volatile Odor.
    Mao X; Zhao X; Huyan Z; Liu T; Yu X
    J Agric Food Chem; 2019 Oct; 67(40):11187-11197. PubMed ID: 31552744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.