These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 3526282)

  • 1. Yeast omnipotent supressor SUP1 (SUP45): nucleotide sequence of the wildtype and a mutant gene.
    Breining P; Piepersberg W
    Nucleic Acids Res; 1986 Jul; 14(13):5187-97. PubMed ID: 3526282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Nucleotide sequence of a mutant allele and wild type allele SUP1 and comparison of transcripts of SUP1 and SUP2 genes].
    Surguchev AP; Telkov MV; Smirnov VN; Breining P; Piepersberg W
    Mol Biol (Mosk); 1987; 21(2):347-58. PubMed ID: 3037308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation of the SUP45 omnipotent suppressor gene of Saccharomyces cerevisiae and characterization of its gene product.
    Himmelfarb HJ; Maicas E; Friesen JD
    Mol Cell Biol; 1985 Apr; 5(4):816-22. PubMed ID: 3887137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversions to respiratory competence of omnipotent sup45 suppressor mutants may be caused by secondary sup45 mutations.
    Mironova LN; Samsonova MG; Zhouravleva GA; Kulikov VN; Soom MJ
    Curr Genet; 1995 Feb; 27(3):195-200. PubMed ID: 7736601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NAM9 nuclear suppressor of mitochondrial ochre mutations in Saccharomyces cerevisiae codes for a protein homologous to S4 ribosomal proteins from chloroplasts, bacteria, and eucaryotes.
    Boguta M; Dmochowska A; Borsuk P; Wrobel K; Gargouri A; Lazowska J; Slonimski PP; Szczesniak B; Kruszewska A
    Mol Cell Biol; 1992 Jan; 12(1):402-12. PubMed ID: 1729612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The yeast omnipotent suppressor SUP46 encodes a ribosomal protein which is a functional and structural homolog of the Escherichia coli S4 ram protein.
    Vincent A; Liebman SW
    Genetics; 1992 Oct; 132(2):375-86. PubMed ID: 1427034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Comparative analysis of the structure of SUP2 genes in Pichia pinus and Saccharomyces cerevisiae].
    Kushnirov VV; Ter-Avanesian MD; Smirnov VN; Chernov IuO; Derkach IL; Novikova ON; Inge-Vechtomov SG; Neĭstat MA; Tolstorukov II
    Mol Biol (Mosk); 1990; 24(4):1024-36. PubMed ID: 2250670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Xenopus laevis, the product of a developmentally regulated mRNA is structurally and functionally homologous to a Saccharomyces cerevisiae protein involved in translation fidelity.
    Tassan JP; Le Guellec K; Kress M; Faure M; Camonis J; Jacquet M; Philippe M
    Mol Cell Biol; 1993 May; 13(5):2815-21. PubMed ID: 8474443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Interaction of mutations in the SUP45 (SUP1) gene in saccharomyces yeasts and their effect on protein structure].
    Mironova LN; Zhuravleva GA; Kulikov VN; Samsonova MG; Soom MIa
    Dokl Akad Nauk; 1993 Dec; 333(5):658-60. PubMed ID: 8292981
    [No Abstract]   [Full Text] [Related]  

  • 10. SUF12 suppressor protein of yeast. A fusion protein related to the EF-1 family of elongation factors.
    Wilson PG; Culbertson MR
    J Mol Biol; 1988 Feb; 199(4):559-73. PubMed ID: 3280807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Divergence and conservation of SUP2 (SUP35) gene of yeast Pichia pinus and Saccharomyces cerevisiae.
    Kushnirov VV; Ter-Avanesyan MD; Didichenko SA; Smirnov VN; Chernoff YO; Derkach IL; Novikova ON; Inge-Vechtomov SG; Neistat MA; Tolstorukov II
    Yeast; 1990; 6(6):461-72. PubMed ID: 2080663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dosage-dependent translational suppression in yeast Saccharomyces cerevisiae.
    Chernoff YO; Inge-Vechtomov SG; Derkach IL; Ptyushkina MV; Tarunina OV; Dagkesamanskaya AR; Ter-Avanesyan MD
    Yeast; 1992 Jul; 8(7):489-99. PubMed ID: 1523883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence and function analysis of a 2.73 kb fragment of Saccharomyces cerevisiae chromosome II.
    Miosga T; Zimmermann FK
    Yeast; 1993 Nov; 9(11):1273-7. PubMed ID: 8109177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of the yeast omnipotent suppressors SUP1(SUP45) and SUP2(SUP35) with non-mendelian factors.
    Dagkesamanskaya AR; Ter-Avanesyan MD
    Genetics; 1991 Jul; 128(3):513-20. PubMed ID: 1874413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleotide sequence of the tcml gene (ribosomal protein L3) of Saccharomyces cerevisiae.
    Schultz LD; Friesen JD
    J Bacteriol; 1983 Jul; 155(1):8-14. PubMed ID: 6305925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning and characterization of the gene coding for cytoplasmic seryl-tRNA synthetase from Saccharomyces cerevisiae.
    Weygand-Durasevic I; Johnson-Burke D; Söll D
    Nucleic Acids Res; 1987 Mar; 15(5):1887-904. PubMed ID: 3031581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence polymorphisms in the yeast gene encoding aspartyl tRNA synthase.
    Reid GA
    Nucleic Acids Res; 1988 Feb; 16(3):1212. PubMed ID: 3278298
    [No Abstract]   [Full Text] [Related]  

  • 18. The NAM9-1 suppressor mutation in a nuclear gene encoding ribosomal mitochondrial protein of Saccharomyces cerevisiae.
    Dmochowska A; Konopińska A; Krzymowska M; Szcześniak B; Boguta M
    Gene; 1995 Aug; 162(1):81-5. PubMed ID: 7557422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The allosuppressor gene SAL4 encodes a protein important for maintaining translational fidelity in Saccharomyces cerevisiae.
    Crouzet M; Izgu F; Grant CM; Tuite MF
    Curr Genet; 1988 Dec; 14(6):537-43. PubMed ID: 3072098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translation elongation factor-3 (EF-3): an evolving eukaryotic ribosomal protein?
    Belfield GP; Ross-Smith NJ; Tuite MF
    J Mol Evol; 1995 Sep; 41(3):376-87. PubMed ID: 7563124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.