BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 35262841)

  • 1. Prediction of Short-Term Breast Cancer Risk with Fusion of CC- and MLO-Based Risk Models in Four-View Mammograms.
    Li Y; Yuan W; Fan M; Zheng B; Li L
    J Digit Imaging; 2022 Aug; 35(4):910-922. PubMed ID: 35262841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of a Four-View Mammographic Image Feature Based Fusion Model to Predict Near-Term Breast Cancer Risk.
    Tan M; Pu J; Cheng S; Liu H; Zheng B
    Ann Biomed Eng; 2015 Oct; 43(10):2416-28. PubMed ID: 25851469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning modeling using normal mammograms for predicting breast cancer risk.
    Arefan D; Mohamed AA; Berg WA; Zuley ML; Sumkin JH; Wu S
    Med Phys; 2020 Jan; 47(1):110-118. PubMed ID: 31667873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fusion of k-Gabor features from medio-lateral-oblique and craniocaudal view mammograms for improved breast cancer diagnosis.
    Sasikala S; Ezhilarasi M
    J Cancer Res Ther; 2018; 14(5):1036-1041. PubMed ID: 30197344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multi-stage fusion framework to classify breast lesions using deep learning and radiomics features computed from four-view mammograms.
    Jones MA; Sadeghipour N; Chen X; Islam W; Zheng B
    Med Phys; 2023 Dec; 50(12):7670-7683. PubMed ID: 37083190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of global and local region-based bilateral mammographic feature asymmetry to predict short-term breast cancer risk.
    Li Y; Fan M; Cheng H; Zhang P; Zheng B; Li L
    Phys Med Biol; 2018 Jan; 63(2):025004. PubMed ID: 29226849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Association and Prediction Utilizing Craniocaudal and Mediolateral Oblique View Digital Mammography and Long-Term Breast Cancer Risk.
    Chen S; Tamimi RM; Colditz GA; Jiang S
    Cancer Prev Res (Phila); 2023 Sep; 16(9):531-537. PubMed ID: 37428020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combination of one-view digital breast tomosynthesis with one-view digital mammography versus standard two-view digital mammography: per lesion analysis.
    Gennaro G; Hendrick RE; Toledano A; Paquelet JR; Bezzon E; Chersevani R; di Maggio C; La Grassa M; Pescarini L; Polico I; Proietti A; Baldan E; Pomerri F; Muzzio PC
    Eur Radiol; 2013 Aug; 23(8):2087-94. PubMed ID: 23620367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvements of an objective model of compressed breasts undergoing mammography: Generation and characterization of breast shapes.
    Rodríguez-Ruiz A; Feng SSJ; van Zelst J; Vreemann S; Mann JR; D'Orsi CJ; Sechopoulos I
    Med Phys; 2017 Jun; 44(6):2161-2172. PubMed ID: 28244109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new approach to develop computer-aided detection schemes of digital mammograms.
    Tan M; Qian W; Pu J; Liu H; Zheng B
    Phys Med Biol; 2015 Jun; 60(11):4413-27. PubMed ID: 25984710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developing a new case based computer-aided detection scheme and an adaptive cueing method to improve performance in detecting mammographic lesions.
    Tan M; Aghaei F; Wang Y; Zheng B
    Phys Med Biol; 2017 Jan; 62(2):358-376. PubMed ID: 27997380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Objective models of compressed breast shapes undergoing mammography.
    Feng SS; Patel B; Sechopoulos I
    Med Phys; 2013 Mar; 40(3):031902. PubMed ID: 23464317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regression Analysis between the Different Breast Dose Quantities Reported in Digital Mammography and Patient Age, Breast Thickness, and Acquisition Parameters.
    Dhou S; Dalah E; AlGhafeer R; Hamidu A; Obaideen A
    J Imaging; 2022 Jul; 8(8):. PubMed ID: 36005454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breast Cancer Conspicuity on Simultaneously Acquired Digital Mammographic Images versus Digital Breast Tomosynthesis Images.
    Korhonen KE; Conant EF; Cohen EA; Synnestvedt M; McDonald ES; Weinstein SP
    Radiology; 2019 Jul; 292(1):69-76. PubMed ID: 31084481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated mammographic breast density estimation using a fully convolutional network.
    Lee J; Nishikawa RM
    Med Phys; 2018 Mar; 45(3):1178-1190. PubMed ID: 29363774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of false-positive recalls using a computerized mammographic image feature analysis scheme.
    Tan M; Pu J; Zheng B
    Phys Med Biol; 2014 Aug; 59(15):4357-73. PubMed ID: 25029964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the malignancy prediction of breast cancer based on the integration of radiomics features from dual-view mammography and clinical parameters.
    Zhou C; Xie H; Zhu F; Yan W; Yu R; Wang Y
    Clin Exp Med; 2023 Oct; 23(6):2357-2368. PubMed ID: 36413273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global Radiomic Features from Mammography for Predicting Difficult-To-Interpret Normal Cases.
    Siviengphanom S; Gandomkar Z; Lewis SJ; Brennan PC
    J Digit Imaging; 2023 Aug; 36(4):1541-1552. PubMed ID: 37253894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of mammographic breast density using a deep convolutional neural network.
    Ciritsis A; Rossi C; Vittoria De Martini I; Eberhard M; Marcon M; Becker AS; Berger N; Boss A
    Br J Radiol; 2019 Jan; 92(1093):20180691. PubMed ID: 30209957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Replacing single-view mediolateral oblique (MLO) digital mammography (DM) with synthesized mammography (SM) with digital breast tomosynthesis (DBT) images: Comparison of the diagnostic performance and radiation dose with two-view DM with or without MLO-DBT.
    Kang HJ; Chang JM; Lee J; Song SE; Shin SU; Kim WH; Bae MS; Moon WK
    Eur J Radiol; 2016 Nov; 85(11):2042-2048. PubMed ID: 27776658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.