These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 35262934)
1. Comparison of the programmed freezer method and deep freezer method in the manufacturing of frozen red blood cell products. Fuchizaki A; Yasui K; Tanaka M; Mitsuhashi H; Shimogaki K; Kimura T; Takihara Y; Hirayama F Vox Sang; 2022 Jun; 117(6):812-821. PubMed ID: 35262934 [TBL] [Abstract][Full Text] [Related]
2. Effect of phosphoenolpyruvate on metabolic and morphological recovery of red cells after prolonged liquid storage and subsequent freezing in glycerol medium. Ohyama M; Aritake H; Shiraki H; Hamasaki N; Maeda Y Cryobiology; 1992 Jun; 29(3):342-6. PubMed ID: 1499319 [TBL] [Abstract][Full Text] [Related]
3. Long-term cryopreservation of red cells from patients with sickle cell disease. Castro OL Transfusion; 1985; 25(1):70-2. PubMed ID: 3969705 [TBL] [Abstract][Full Text] [Related]
4. Freeze drying of red blood cells: the use of directional freezing and a new radio frequency lyophilization device. Arav A; Natan D Biopreserv Biobank; 2012 Aug; 10(4):386-94. PubMed ID: 24849889 [TBL] [Abstract][Full Text] [Related]
5. Prolonged post-thaw shelf life of red cells frozen without prefreeze removal of excess glycerol. Lelkens CC; de Korte D; Lagerberg JW Vox Sang; 2015 Apr; 108(3):219-25. PubMed ID: 25471217 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of a large-scale frozen blood program. Szymanski IO; Carrington EJ Transfusion; 1977; 17(5):431-7. PubMed ID: 910259 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of two distinct cryoprotectants for cryopreservation of human red blood cell concentrates. Korsak J; Goller A; Rzeszotarska A; Pleskacz K Cryo Letters; 2014; 35(1):15-21. PubMed ID: 24872153 [TBL] [Abstract][Full Text] [Related]
8. Interlaboratory comparison of red-cell ATP, 2,3-diphosphoglycerate and haemolysis measurements. Hess JR; Kagen LR; van der Meer PF; Simon T; Cardigan R; Greenwalt TJ; AuBuchon JP; Brand A; Lockwood W; Zanella A; Adamson J; Snyder E; Taylor HL; Moroff G; Hogman C Vox Sang; 2005 Jul; 89(1):44-8. PubMed ID: 15938739 [TBL] [Abstract][Full Text] [Related]
9. Freeze preservation of sickle erythrocytes. Castro O; Hardy KP; Winter WP; Hornblower M; Meryman HT Am J Hematol; 1981; 10(3):297-304. PubMed ID: 7246537 [TBL] [Abstract][Full Text] [Related]
10. In vitro study of the protective effect of trehalose and dextran during freezing of human red blood cells in liquid nitrogen. Pellerin-Mendes C; Million L; Marchand-Arvier M; Labrude P; Vigneron C Cryobiology; 1997 Sep; 35(2):173-86. PubMed ID: 9299109 [TBL] [Abstract][Full Text] [Related]
11. Effects of the temperature, the duration of frozen storage, and the freezing container on in vitro measurements in human peripheral blood mononuclear cells. Valeri CR; Pivacek LE Transfusion; 1996 Apr; 36(4):303-8. PubMed ID: 8623128 [TBL] [Abstract][Full Text] [Related]
12. Prolonged maintenance of 2,3-diphosphoglycerate acid and adenosine triphosphate in red blood cells during storage. de Korte D; Kleine M; Korsten HG; Verhoeven AJ Transfusion; 2008 Jun; 48(6):1081-9. PubMed ID: 18373504 [TBL] [Abstract][Full Text] [Related]
13. Application of phosphoenolpyruvate into the preparation of frozen and thawed red cells. Shiraki H; Ohyama M; Hamasaki N; Maeda Y Biomed Biochim Acta; 1990; 49(2-3):S204-7. PubMed ID: 2386507 [TBL] [Abstract][Full Text] [Related]
14. Osmotic tolerance limits of red blood cells from umbilical cord blood. Zhurova M; Lusianti RE; Higgins AZ; Acker JP Cryobiology; 2014 Aug; 69(1):48-54. PubMed ID: 24836371 [TBL] [Abstract][Full Text] [Related]
15. An experiment with glycerol-frozen red blood cells stored at -80 degrees C for up to 37 years. Valeri CR; Ragno G; Pivacek LE; Cassidy GP; Srey R; Hansson-Wicher M; Leavy ME Vox Sang; 2000; 79(3):168-74. PubMed ID: 11111236 [TBL] [Abstract][Full Text] [Related]
16. A novel protocol for cryopreservation of paediatric red blood cell units allows increased availability of rare blood types. Larsson L; Larsson S; Derving J; Watz E; Uhlin M Vox Sang; 2019 Oct; 114(7):711-720. PubMed ID: 31373012 [TBL] [Abstract][Full Text] [Related]
17. Addition of oligosaccharide decreases the freezing lesions on human red blood cell membrane in the presence of dextran and glucose. Quan GB; Han Y; Liu MX; Fang L; Du W; Ren SP; Wang JX; Wang Y Cryobiology; 2011 Apr; 62(2):135-44. PubMed ID: 21276438 [TBL] [Abstract][Full Text] [Related]
18. Stability after thawing of RBCs frozen with the high- and low-glycerol method. Lelkens CC; Noorman F; Koning JG; Truijens-de Lange R; Stekkinger PS; Bakker JC; Lagerberg JW; Brand A; Verhoeven AJ Transfusion; 2003 Feb; 43(2):157-64. PubMed ID: 12559010 [TBL] [Abstract][Full Text] [Related]
19. Effect of cryopreservation on a rare McLeod donor red blood cell concentrate. Turner TR; Clarke G; Denomme GA; Skeate R; Acker JP Immunohematology; 2021 Jun; 37(2):78-83. PubMed ID: 34170642 [TBL] [Abstract][Full Text] [Related]
20. Effects of trehalose-loaded liposomes on red blood cell response to freezing and post-thaw membrane quality. Holovati JL; Gyongyossy-Issa MIC; Acker JP Cryobiology; 2009 Feb; 58(1):75-83. PubMed ID: 19059392 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]