These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35263023)

  • 1. Structure-Guided Modulation of the Catalytic Properties of [2Fe-2S]-Dependent Dehydratases.
    Melse O; Sutiono S; Haslbeck M; Schenk G; Antes I; Sieber V
    Chembiochem; 2022 May; 23(10):e202200088. PubMed ID: 35263023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and Functional Insight into the Mechanism of the Fe-S Cluster-Dependent Dehydratase from Paralcaligenes ureilyticus.
    Bayaraa T; Lonhienne T; Sutiono S; Melse O; Brück TB; Marcellin E; Bernhardt PV; Boden M; Harmer JR; Sieber V; Guddat LW; Schenk G
    Chemistry; 2023 Feb; 29(9):e202203140. PubMed ID: 36385513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unveiling the importance of the C-terminus in the sugar acid dehydratase of the IlvD/EDD superfamily.
    Ren Y; Vettenranta E; Penttinen L; Blomster Andberg M; Koivula A; Rouvinen J; Hakulinen N
    Appl Microbiol Biotechnol; 2024 Aug; 108(1):436. PubMed ID: 39126499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic promiscuity in dihydroxy-acid dehydratase from the thermoacidophilic archaeon Sulfolobus solfataricus.
    Kim S; Lee SB
    J Biochem; 2006 Mar; 139(3):591-6. PubMed ID: 16567425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The crystal structure of D-xylonate dehydratase reveals functional features of enzymes from the Ilv/ED dehydratase family.
    Rahman MM; Andberg M; Koivula A; Rouvinen J; Hakulinen N
    Sci Rep; 2018 Jan; 8(1):865. PubMed ID: 29339766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization and mutagenesis of two novel iron-sulphur cluster pentonate dehydratases.
    Andberg M; Aro-Kärkkäinen N; Carlson P; Oja M; Bozonnet S; Toivari M; Hakulinen N; O'Donohue M; Penttilä M; Koivula A
    Appl Microbiol Biotechnol; 2016 Sep; 100(17):7549-63. PubMed ID: 27102126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of recombinantly expressed dihydroxy-acid dehydratase from Sulfobus solfataricus-A key enzyme for the conversion of carbohydrates into chemicals.
    Carsten JM; Schmidt A; Sieber V
    J Biotechnol; 2015 Oct; 211():31-41. PubMed ID: 26102631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The active site of the
    Bashiri G; Grove TL; Hegde SS; Lagautriere T; Gerfen GJ; Almo SC; Squire CJ; Blanchard JS; Baker EN
    J Biol Chem; 2019 Aug; 294(35):13158-13170. PubMed ID: 31315931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyanobacterial Dihydroxyacid Dehydratases Are a Promising Growth Inhibition Target.
    Zhang P; MacTavish BS; Yang G; Chen M; Roh J; Newsome KR; Bruner SD; Ding Y
    ACS Chem Biol; 2020 Aug; 15(8):2281-2288. PubMed ID: 32786290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Crystal Structure of a Bacterial l-Arabinonate Dehydratase Contains a [2Fe-2S] Cluster.
    Rahman MM; Andberg M; Thangaraj SK; Parkkinen T; Penttilä M; Jänis J; Koivula A; Rouvinen J; Hakulinen N
    ACS Chem Biol; 2017 Jul; 12(7):1919-1927. PubMed ID: 28574691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of an unusual [2Fe-2S]-binding motif in the CDP-6-deoxy-D-glycero-l-threo-4-hexulose-3-dehydrase from Yersinia pseudotuberculosis: implication for C-3 deoxygenation in the biosynthesis of 3,6-dideoxyhexoses.
    Agnihotri G; Liu YN; Paschal BM; Liu HW
    Biochemistry; 2004 Nov; 43(44):14265-74. PubMed ID: 15518577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of function in the enolase superfamily: D-mannonate and d-gluconate dehydratases in the D-mannonate dehydratase subgroup.
    Wichelecki DJ; Balthazor BM; Chau AC; Vetting MW; Fedorov AA; Fedorov EV; Lukk T; Patskovsky YV; Stead MB; Hillerich BS; Seidel RD; Almo SC; Gerlt JA
    Biochemistry; 2014 Apr; 53(16):2722-31. PubMed ID: 24697546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Function and maturation of the Fe-S center in dihydroxyacid dehydratase from
    Gao H; Azam T; Randeniya S; Couturier J; Rouhier N; Johnson MK
    J Biol Chem; 2018 Mar; 293(12):4422-4433. PubMed ID: 29425096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kemp Elimination Catalyzed by Naturally Occurring Aldoxime Dehydratases.
    Miao Y; Metzner R; Asano Y
    Chembiochem; 2017 Mar; 18(5):451-454. PubMed ID: 28120515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleotide sugar dehydratases: Structure, mechanism, substrate specificity, and application potential.
    Vogel U; Beerens K; Desmet T
    J Biol Chem; 2022 Apr; 298(4):101809. PubMed ID: 35271853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and mutagenic conversion of E1 dehydrase: at the crossroads of dehydration, amino transfer, and epimerization.
    Smith P; Szu PH; Bui C; Liu HW; Tsai SC
    Biochemistry; 2008 Jun; 47(24):6329-41. PubMed ID: 18491919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dihydroxy-Acid Dehydratases From Pathogenic Bacteria: Emerging Drug Targets to Combat Antibiotic Resistance.
    Bayaraa T; Gaete J; Sutiono S; Kurz J; Lonhienne T; Harmer JR; Bernhardt PV; Sieber V; Guddat L; Schenk G
    Chemistry; 2022 Aug; 28(44):e202200927. PubMed ID: 35535733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-function studies of two novel UDP-GlcNAc C6 dehydratases/C4 reductases. Variation from the SYK dogma.
    Creuzenet C; Urbanic RV; Lam JS
    J Biol Chem; 2002 Jul; 277(30):26769-78. PubMed ID: 12004063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallization and X-ray diffraction analysis of an L-arabinonate dehydratase from Rhizobium leguminosarum bv. trifolii and a D-xylonate dehydratase from Caulobacter crescentus.
    Rahman MM; Andberg M; Koivula A; Rouvinen J; Hakulinen N
    Acta Crystallogr F Struct Biol Commun; 2016 Aug; 72(Pt 8):604-8. PubMed ID: 27487924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural insight into substrate binding and catalysis of a novel 2-keto-3-deoxy-D-arabinonate dehydratase illustrates common mechanistic features of the FAH superfamily.
    Brouns SJ; Barends TR; Worm P; Akerboom J; Turnbull AP; Salmon L; van der Oost J
    J Mol Biol; 2008 May; 379(2):357-71. PubMed ID: 18448118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.