BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 35263096)

  • 1. Ginger and Garlic Extracts Enhance Osteogenesis in 3D Printed Calcium Phosphate Bone Scaffolds with Bimodal Pore Distribution.
    Bose S; Banerjee D; Vu AA
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):12964-12975. PubMed ID: 35263096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model.
    Tarafder S; Dernell WS; Bandyopadhyay A; Bose S
    J Biomed Mater Res B Appl Biomater; 2015 Apr; 103(3):679-90. PubMed ID: 25045131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering.
    Tarafder S; Balla VK; Davies NM; Bandyopadhyay A; Bose S
    J Tissue Eng Regen Med; 2013 Aug; 7(8):631-41. PubMed ID: 22396130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced In Vivo Bone and Blood Vessel Formation by Iron Oxide and Silica Doped 3D Printed Tricalcium Phosphate Scaffolds.
    Bose S; Banerjee D; Robertson S; Vahabzadeh S
    Ann Biomed Eng; 2018 Sep; 46(9):1241-1253. PubMed ID: 29728785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Chemistry on Osteogenesis and Angiogenesis Towards Bone Tissue Engineering Using 3D Printed Scaffolds.
    Bose S; Tarafder S; Bandyopadhyay A
    Ann Biomed Eng; 2017 Jan; 45(1):261-272. PubMed ID: 27287311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional printing akermanite porous scaffolds for load-bearing bone defect repair: An investigation of osteogenic capability and mechanical evolution.
    Liu A; Sun M; Yang X; Ma C; Liu Y; Yang X; Yan S; Gou Z
    J Biomater Appl; 2016 Nov; 31(5):650-660. PubMed ID: 27585972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vitamin D
    Vu AA; Bose S
    Ann Biomed Eng; 2020 Mar; 48(3):1025-1033. PubMed ID: 31168676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled release of soy isoflavones from multifunctional 3D printed bone tissue engineering scaffolds.
    Sarkar N; Bose S
    Acta Biomater; 2020 Sep; 114():407-420. PubMed ID: 32652224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beta-tricalcium phosphate enhanced mechanical and biological properties of 3D-printed polyhydroxyalkanoates scaffold for bone tissue engineering.
    Ye X; Zhang Y; Liu T; Chen Z; Chen W; Wu Z; Wang Y; Li J; Li C; Jiang T; Zhang Y; Wu H; Xu X
    Int J Biol Macromol; 2022 Jun; 209(Pt A):1553-1561. PubMed ID: 35439474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional Printed Mg-Doped β-TCP Bone Tissue Engineering Scaffolds: Effects of Magnesium Ion Concentration on Osteogenesis and Angiogenesis
    Gu Y; Zhang J; Zhang X; Liang G; Xu T; Niu W
    Tissue Eng Regen Med; 2019 Aug; 16(4):415-429. PubMed ID: 31413945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased Osteogenic Potential of Pre-Osteoblasts on Three-Dimensional Printed Scaffolds Compared to Porous Scaffolds for Bone Regeneration.
    Zamani Y; Amoabediny G; Mohammadi J; Zandieh-Doulabi B; Klein-Nulend J; Helder MN
    Iran Biomed J; 2021 Mar; 25(2):78-87. PubMed ID: 33461289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel 3D-bioprinted Porous Nano Attapulgite Scaffolds with Good Performance for Bone Regeneration.
    Wang Z; Hui A; Zhao H; Ye X; Zhang C; Wang A; Zhang C
    Int J Nanomedicine; 2020; 15():6945-6960. PubMed ID: 33061361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced osteogenesis of 3D printed β-TCP scaffolds with Cissus Quadrangularis extract-loaded polydopamine coatings.
    Robertson SF; Bose S
    J Mech Behav Biomed Mater; 2020 Nov; 111():103945. PubMed ID: 32920263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Vitamin A (Retinol) Release from Calcium Phosphate Matrices and Porous 3D Printed Scaffolds on Bone Cell Proliferation and Maturation.
    Vu AA; Kushram P; Bose S
    ACS Appl Bio Mater; 2022 Mar; 5(3):1120-1129. PubMed ID: 35258918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D printed tricalcium phosphate scaffolds: Effect of SrO and MgO doping on
    Tarafder S; Davies NM; Bandyopadhyay A; Bose S
    Biomater Sci; 2013 Dec; 1(12):1250-1259. PubMed ID: 24729867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low temperature hybrid 3D printing of hierarchically porous bone tissue engineering scaffolds with
    Lai J; Wang C; Liu J; Chen S; Liu C; Huang X; Wu J; Pan Y; Xie Y; Wang M
    Biofabrication; 2022 Aug; 14(4):. PubMed ID: 35896092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds.
    Meininger S; Mandal S; Kumar A; Groll J; Basu B; Gbureck U
    Acta Biomater; 2016 Feb; 31():401-411. PubMed ID: 26621692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteogenesis by foamed and 3D-printed nanostructured calcium phosphate scaffolds: Effect of pore architecture.
    Barba A; Maazouz Y; Diez-Escudero A; Rappe K; Espanol M; Montufar EB; Öhman-Mägi C; Persson C; Fontecha P; Manzanares MC; Franch J; Ginebra MP
    Acta Biomater; 2018 Oct; 79():135-147. PubMed ID: 30195084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique.
    Zhou Z; Buchanan F; Mitchell C; Dunne N
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():1-10. PubMed ID: 24656346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and in vitro evaluation of 3D printed porous silicate substituted calcium phosphate scaffolds for bone tissue engineering.
    Chen D; Chen G; Zhang X; Chen J; Li J; Kang K; He W; Kong Y; Wu L; Su B; Zhao K; Si D; Wang X
    Biotechnol Bioeng; 2022 Nov; 119(11):3297-3310. PubMed ID: 35923072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.