These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 35263105)

  • 1. Stiffening Effect of Ceramide on Lipid Membranes Provides Non-Sacrificial Protection against Potent Chemical Damage.
    Zhao L; Liao C; Chen D; Zhang D; Li G; Zhang X
    Langmuir; 2022 Mar; 38(11):3522-3529. PubMed ID: 35263105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cholesterol provides nonsacrificial protection of membrane lipids from chemical damage at air-water interface.
    Zhang X; Barraza KM; Beauchamp JL
    Proc Natl Acad Sci U S A; 2018 Mar; 115(13):3255-3260. PubMed ID: 29507237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cholesterol-rich fluid membranes solubilize ceramide domains: implications for the structure and dynamics of mammalian intracellular and plasma membranes.
    Castro BM; Silva LC; Fedorov A; de Almeida RF; Prieto M
    J Biol Chem; 2009 Aug; 284(34):22978-87. PubMed ID: 19520848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cholesterol surrogates: a comparison of cholesterol and 16:0 ceramide in POPC bilayers.
    Pandit SA; Chiu SW; Jakobsson E; Grama A; Scott HL
    Biophys J; 2007 Feb; 92(3):920-7. PubMed ID: 17071659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ceramide-lipid interactions studied by MD simulations and solid-state NMR.
    Dutagaci B; Becker-Baldus J; Faraldo-Gómez JD; Glaubitz C
    Biochim Biophys Acta; 2014 Oct; 1838(10):2511-9. PubMed ID: 24882733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and Membrane Properties of Oxidized Ceramide Derivatives.
    Matsufuji T; Kinoshita M; Möuts A; Slotte JP; Matsumori N
    Langmuir; 2018 Jan; 34(1):465-471. PubMed ID: 29231736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ceramide-mediated transport of chloride and bicarbonate across phospholipid membranes.
    Harrell WA; Bergmeyer ML; Zavalij PY; Davis JT
    Chem Commun (Camb); 2010 Jun; 46(22):3950-2. PubMed ID: 20431830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Searching for the molecular arrangement of transmembrane ceramide channels.
    Anishkin A; Sukharev S; Colombini M
    Biophys J; 2006 Apr; 90(7):2414-26. PubMed ID: 16415050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational analysis of water residence on ceramide and sphingomyelin bilayer membranes.
    Imai Y; Liu X; Yamagishi J; Mori K; Neya S; Hoshino T
    J Mol Graph Model; 2010 Nov; 29(3):461-9. PubMed ID: 20951070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ceramide: a simple sphingolipid with unique biophysical properties.
    Castro BM; Prieto M; Silva LC
    Prog Lipid Res; 2014 Apr; 54():53-67. PubMed ID: 24513486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and barrier properties of the skin ceramide lipid bilayer: a molecular dynamics simulation study.
    Badhe Y; Gupta R; Rai B
    J Mol Model; 2019 Apr; 25(5):140. PubMed ID: 31041534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric addition of ceramides but not dihydroceramides promotes transbilayer (flip-flop) lipid motion in membranes.
    Contreras FX; Basañez G; Alonso A; Herrmann A; Goñi FM
    Biophys J; 2005 Jan; 88(1):348-59. PubMed ID: 15465865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular simulation of rapid translocation of cholesterol, diacylglycerol, and ceramide in model raft and nonraft membranes.
    Bennett WFD; Tieleman DP
    J Lipid Res; 2012 Mar; 53(3):421-429. PubMed ID: 22246847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of ceramide structure on membrane biophysical properties: the role of acyl chain length and unsaturation.
    Pinto SN; Silva LC; Futerman AH; Prieto M
    Biochim Biophys Acta; 2011 Nov; 1808(11):2753-60. PubMed ID: 21835161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biophysical properties of sphingosine, ceramides and other simple sphingolipids.
    Goñi FM; Sot J; Alonso A
    Biochem Soc Trans; 2014 Oct; 42(5):1401-8. PubMed ID: 25233422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of ceramide on liquid-ordered domains investigated by simultaneous AFM and FCS.
    Chiantia S; Kahya N; Ries J; Schwille P
    Biophys J; 2006 Jun; 90(12):4500-8. PubMed ID: 16565041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulations of skin barrier function: free energies of hydrophobic and hydrophilic transmembrane pores in ceramide bilayers.
    Notman R; Anwar J; Briels WJ; Noro MG; den Otter WK
    Biophys J; 2008 Nov; 95(10):4763-71. PubMed ID: 18708461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A combined fluorescence spectroscopy, confocal and 2-photon microscopy approach to re-evaluate the properties of sphingolipid domains.
    Pinto SN; Fernandes F; Fedorov A; Futerman AH; Silva LC; Prieto M
    Biochim Biophys Acta; 2013 Sep; 1828(9):2099-110. PubMed ID: 23702462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sterol affinity for bilayer membranes is affected by their ceramide content and the ceramide chain length.
    Nyholm TK; Grandell PM; Westerlund B; Slotte JP
    Biochim Biophys Acta; 2010 May; 1798(5):1008-13. PubMed ID: 20044977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.