These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35263105)

  • 21. On the Importance of the C(1)-OH and C(3)-OH Functional Groups of the Long-Chain Base of Ceramide for Interlipid Interaction and Lateral Segregation into Ceramide-Rich Domains.
    Möuts A; Vattulainen E; Matsufuji T; Kinoshita M; Matsumori N; Slotte JP
    Langmuir; 2018 Dec; 34(51):15864-15870. PubMed ID: 30507134
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural Changes in Ceramide Bilayers Rationalize Increased Permeation through Stratum Corneum Models with Shorter Acyl Tails.
    Paloncýová M; Vávrová K; Sovová Ž; DeVane R; Otyepka M; Berka K
    J Phys Chem B; 2015 Jul; 119(30):9811-9. PubMed ID: 26151643
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular-dynamics simulation of a ceramide bilayer.
    Pandit SA; Scott HL
    J Chem Phys; 2006 Jan; 124(1):14708. PubMed ID: 16409052
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Changes in order parameters associated with ceramide-mediated membrane reorganization measured using pTIRFM.
    Ramirez DM; Jakubek ZJ; Lu Z; Ogilvie WW; Johnston LJ
    Langmuir; 2013 Dec; 29(51):15907-18. PubMed ID: 24308875
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mixing properties of sphingomyelin ceramide bilayers: a simulation study.
    Metcalf R; Pandit SA
    J Phys Chem B; 2012 Apr; 116(15):4500-9. PubMed ID: 22390271
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Shape transitions and lattice structuring of ceramide-enriched domains generated by sphingomyelinase in lipid monolayers.
    Härtel S; Fanani ML; Maggio B
    Biophys J; 2005 Jan; 88(1):287-304. PubMed ID: 15489298
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of the ceramide subspecies on the nanostructure of stratum corneum lipids using neutron scattering and molecular dynamics simulations. Part I: impact of CER[NS].
    Schmitt T; Gupta R; Lange S; Sonnenberger S; Dobner B; Hauß T; Rai B; Neubert RHH
    Chem Phys Lipids; 2018 Aug; 214():58-68. PubMed ID: 29859142
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular Dynamics Simulations of Ceramide and Ceramide-Phosphatidylcholine Bilayers.
    Wang E; Klauda JB
    J Phys Chem B; 2017 Nov; 121(43):10091-10104. PubMed ID: 29017324
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effects of N-acyl chain methylations on ceramide molecular properties in bilayer membranes.
    Maula T; Urzelai B; Peter Slotte J
    Eur Biophys J; 2011 Jul; 40(7):857-63. PubMed ID: 21499939
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The permeability enhancing mechanism of DMSO in ceramide bilayers simulated by molecular dynamics.
    Notman R; den Otter WK; Noro MG; Briels WJ; Anwar J
    Biophys J; 2007 Sep; 93(6):2056-68. PubMed ID: 17513383
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Absence of fluid-ordered/fluid-disordered phase coexistence in ceramide/POPC mixtures containing cholesterol.
    Fidorra M; Duelund L; Leidy C; Simonsen AC; Bagatolli LA
    Biophys J; 2006 Jun; 90(12):4437-51. PubMed ID: 16565051
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function.
    Megha ; London E
    J Biol Chem; 2004 Mar; 279(11):9997-10004. PubMed ID: 14699154
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular dynamic simulations of oxidized skin lipid bilayer and permeability of reactive oxygen species.
    Yadav DK; Kumar S; Choi EH; Chaudhary S; Kim MH
    Sci Rep; 2019 Mar; 9(1):4496. PubMed ID: 30872693
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Membrane restructuring via ceramide results in enhanced solute efflux.
    Montes LR; Ruiz-Argüello MB; Goñi FM; Alonso A
    J Biol Chem; 2002 Apr; 277(14):11788-94. PubMed ID: 11796726
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication and characterization of pseudo-ceramide-based liposomal membranes.
    Kim DH; An EJ; Kim J; Han SH; Kim JW; Oh SG; Suh KD; Cho EC
    Colloids Surf B Biointerfaces; 2009 Oct; 73(2):207-11. PubMed ID: 19539450
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Liquid but durable: molecular dynamics simulations explain the unique properties of archaeal-like membranes.
    Chugunov AO; Volynsky PE; Krylov NA; Boldyrev IA; Efremov RG
    Sci Rep; 2014 Dec; 4():7462. PubMed ID: 25501042
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ceramide acyl chain length markedly influences miscibility with palmitoyl sphingomyelin in bilayer membranes.
    Westerlund B; Grandell PM; Isaksson YJ; Slotte JP
    Eur Biophys J; 2010 Jul; 39(8):1117-28. PubMed ID: 19908035
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of Hydroxylation, Chain Length, and Chain Unsaturation on Bilayer Properties of Ceramides.
    Maula T; Al Sazzad MA; Slotte JP
    Biophys J; 2015 Oct; 109(8):1639-51. PubMed ID: 26488655
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ceramide channel: Structural basis for selective membrane targeting.
    Perera MN; Ganesan V; Siskind LJ; Szulc ZM; Bielawska A; Bittman R; Colombini M
    Chem Phys Lipids; 2016 Jan; 194():110-116. PubMed ID: 26408265
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ceramide: from lateral segregation to mechanical stress.
    López-Montero I; Monroy F; Vélez M; Devaux PF
    Biochim Biophys Acta; 2010 Jul; 1798(7):1348-56. PubMed ID: 20026045
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.