These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 35263248)

  • 1. A Handheld Steerable Surgical Drill With a Novel Miniaturized Articulated Joint Module for Dexterous Confined-Space Bone Work.
    Wang Y; Zheng H; Taylor RH; Samuel Au KW
    IEEE Trans Biomed Eng; 2022 Sep; 69(9):2926-2934. PubMed ID: 35263248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a novel tendon-driven manipulator structure based on monolithic compliant rolling-contact joint for minimally invasive surgery.
    Zhang D; Sun Y; Lueth TC
    Int J Comput Assist Radiol Surg; 2021 Sep; 16(9):1615-1625. PubMed ID: 34235629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3-Fluted orthopaedic drills exhibit superior bending stiffness to their 2-fluted rivals: clinical implications for targeting ability and the incidence of drill-bit failure.
    Bertollo N; Gothelf TK; Walsh WR
    Injury; 2008 Jul; 39(7):734-41. PubMed ID: 18490018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of various drilling parameters on bone during implantology: An in vitro experimental study.
    Karaca F; Aksakal B
    Acta Bioeng Biomech; 2013; 15(4):25-32. PubMed ID: 24479623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a Compact Actuation and Control System for Flexible Medical Robots.
    Morimoto TK; Hawkes EW; Okamura AM
    IEEE Robot Autom Lett; 2017 Jul; 2(3):1579-1585. PubMed ID: 28664187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steerable Surgical Instrument for Conventional and Single-Site Minimally Invasive Surgery.
    Hernández-Valderrama VG; Ordorica-Flores RM; Montoya-Alvarez S; Haro-Mendoza D; Ochoa-Toledo L; Lorias-Espinoza D; Ortiz-Simón JL; Pérez-Escamirosa F
    Surg Innov; 2022 Jun; 29(3):449-458. PubMed ID: 34358428
    [No Abstract]   [Full Text] [Related]  

  • 7. Attaining high bending stiffness by full actuation in steerable minimally invasive surgical instruments.
    Jelínek F; Gerboni G; Henselmans PW; Pessers R; Breedveld P
    Minim Invasive Ther Allied Technol; 2015 Apr; 24(2):77-85. PubMed ID: 25263681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surgical drilling of curved holes in bone - a patent review.
    Sendrowicz A; Scali M; Culmone C; Breedveld P
    Expert Rev Med Devices; 2019 Apr; 16(4):287-298. PubMed ID: 30889370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel design for steerable instruments based on laser-cut nitinol.
    Dewaele F; Kalmar AF; De Ryck F; Lumen N; Williams L; Baert E; Vereecke H; Kalala Okito JP; Mabilde C; Blanckaert B; Keereman V; Leybaert L; Van Nieuwenhove Y; Caemaert J; Van Roost D
    Surg Innov; 2014 Jun; 21(3):303-11. PubMed ID: 24510935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of a self-centring drill bit for orthopaedic surgery: A systematic comparison of the drilling performance.
    Bai W; Pan P; Shu L; Yang Y; Zhang J; Xu J; Sugita N
    J Mech Behav Biomed Mater; 2021 Nov; 123():104727. PubMed ID: 34492615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methods for Improving the Curvature of Steerable Needles in Biological Tissue.
    Adebar TK; Greer JD; Laeseke PF; Hwang GL; Okamura AM
    IEEE Trans Biomed Eng; 2016 Jun; 63(6):1167-77. PubMed ID: 26441438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surgical drilling: design and performance of an improved drill.
    Saha S; Pal S; Albright JA
    J Biomech Eng; 1982 Aug; 104(3):245-52. PubMed ID: 7120951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drilling of bone: Effect of drill bit geometries on thermal osteonecrosis risk regions.
    Ali Akhbar MF; Yusoff AR
    Proc Inst Mech Eng H; 2019 Feb; 233(2):207-218. PubMed ID: 30572787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved accuracy of navigated drilling using a drill alignment device.
    Kendoff D; Citak M; Gardner MJ; Stübig T; Krettek C; Hüfner T
    J Orthop Res; 2007 Jul; 25(7):951-7. PubMed ID: 17415775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal effects of various drill materials during implant site preparation-Ceramic vs. stainless steel drills: A comparative in vitro study in a standardised bovine bone model.
    Tur D; Giannis K; Unger E; Mittlböck M; Rausch-Fan X; Strbac GD
    Clin Oral Implants Res; 2021 Feb; 32(2):154-166. PubMed ID: 33220104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat production by 3 implant drill systems after repeated drilling and sterilization.
    Chacon GE; Bower DL; Larsen PE; McGlumphy EA; Beck FM
    J Oral Maxillofac Surg; 2006 Feb; 64(2):265-9. PubMed ID: 16413899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infrared thermographic evaluation of rise in temperature with conventional versus trephine drills.
    Gupta S; Gupta AS; Chandu GS; Jain S
    J Indian Prosthodont Soc; 2021; 21(1):45-49. PubMed ID: 33835067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feed rate control in robotic bone drilling process.
    Boiadjiev T; Boiadjiev G; Delchev K; Chavdarov I; Kastelov R
    Proc Inst Mech Eng H; 2021 Mar; 235(3):273-280. PubMed ID: 33231113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accuracy study of computer-assisted drilling: the effect of bone density, drill bit characteristics, and use of a mechanical guide.
    Hüfner T; Geerling J; Oldag G; Richter M; Kfuri M; Pohlemann T; Krettek C
    J Orthop Trauma; 2005; 19(5):317-22. PubMed ID: 15891540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the development of a new flexible drill for orthopedic surgery and the forces experienced on drilling bovine bone.
    Ahmad Fuad ANB; Deep K; Yao W; Rowe P
    Proc Inst Mech Eng H; 2018 May; 232(5):502-507. PubMed ID: 29543120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.