BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35263463)

  • 1. Electrochemically Exfoliated Chlorine-Doped Graphene for Flexible All-Solid-State Micro-Supercapacitors with High Volumetric Energy Density.
    Liu B; Zhang Q; Zhang L; Xu C; Pan Z; Zhou Q; Zhou W; Wang J; Gu L; Liu H
    Adv Mater; 2022 May; 34(19):e2106309. PubMed ID: 35263463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile preparation of flexible binder-free graphene electrodes for high-performance supercapacitors.
    Lin S; Tang J; Zhang W; Zhang K; Chen Y; Gao R; Yin H; Yu X; Qin LC
    RSC Adv; 2022 Apr; 12(20):12590-12599. PubMed ID: 35480379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemically Scalable Production of Fluorine-Modified Graphene for Flexible and High-Energy Ionogel-Based Microsupercapacitors.
    Zhou F; Huang H; Xiao C; Zheng S; Shi X; Qin J; Fu Q; Bao X; Feng X; Müllen K; Wu ZS
    J Am Chem Soc; 2018 Jul; 140(26):8198-8205. PubMed ID: 29893575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All-solid-state flexible supercapacitor based on nanotube-reinforced polypyrrole hollowed structures.
    Kwon H; Han DJ; Lee BY
    RSC Adv; 2020 Nov; 10(68):41495-41502. PubMed ID: 35516535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Inkjet Printing of Aqueous Inks to Flexible All-Solid-State Graphene Hybrid Micro-Supercapacitors.
    Li B; Hu N; Su Y; Yang Z; Shao F; Li G; Zhang C; Zhang Y
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):46044-46053. PubMed ID: 31718126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vertically Oriented Graphene Nanoribbon Fibers for High-Volumetric Energy Density All-Solid-State Asymmetric Supercapacitors.
    Sheng L; Wei T; Liang Y; Jiang L; Qu L; Fan Z
    Small; 2017 Jun; 13(22):. PubMed ID: 28417542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stamping Fabrication of Flexible Planar Micro-Supercapacitors Using Porous Graphene Inks.
    Li F; Qu J; Li Y; Wang J; Zhu M; Liu L; Ge J; Duan S; Li T; Bandari VK; Huang M; Zhu F; Schmidt OG
    Adv Sci (Weinh); 2020 Oct; 7(19):2001561. PubMed ID: 33042763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-Step Device Fabrication of Phosphorene and Graphene Interdigital Micro-Supercapacitors with High Energy Density.
    Xiao H; Wu ZS; Chen L; Zhou F; Zheng S; Ren W; Cheng HM; Bao X
    ACS Nano; 2017 Jul; 11(7):7284-7292. PubMed ID: 28628293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scalable Fabrication of Photochemically Reduced Graphene-Based Monolithic Micro-Supercapacitors with Superior Energy and Power Densities.
    Wang S; Wu ZS; Zheng S; Zhou F; Sun C; Cheng HM; Bao X
    ACS Nano; 2017 Apr; 11(4):4283-4291. PubMed ID: 28350433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Layered-MnO₂ Nanosheet Grown on Nitrogen-Doped Graphene Template as a Composite Cathode for Flexible Solid-State Asymmetric Supercapacitor.
    Liu Y; Miao X; Fang J; Zhang X; Chen S; Li W; Feng W; Chen Y; Wang W; Zhang Y
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5251-60. PubMed ID: 26842681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition metal sulfides grown on graphene fibers for wearable asymmetric supercapacitors with high volumetric capacitance and high energy density.
    Cai W; Lai T; Lai J; Xie H; Ouyang L; Ye J; Yu C
    Sci Rep; 2016 Jun; 6():26890. PubMed ID: 27248510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free-Standing Black Phosphorus Thin Films for Flexible Quasi-Solid-State Micro-Supercapacitors with High Volumetric Power and Energy Density.
    Yang J; Pan Z; Yu Q; Zhang Q; Ding X; Shi X; Qiu Y; Zhang K; Wang J; Zhang Y
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5938-5946. PubMed ID: 30648840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled multimodal hierarchically porous electrode self-assembly of electrochemically exfoliated graphene for fully solid-state flexible supercapacitor.
    Sari NP; Dutta D; Jamaluddin A; Chang JK; Su CY
    Phys Chem Chem Phys; 2017 Nov; 19(45):30381-30392. PubMed ID: 29119159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemically Exfoliated Graphene Additive-Free Inks for 3D Printing Customizable Monolithic Integrated Micro-Supercapacitors on a Large Scale.
    Zhang L; Qin J; Das P; Wang S; Bai T; Zhou F; Wu M; Wu ZS
    Adv Mater; 2024 May; 36(19):e2313930. PubMed ID: 38325888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible Nb₄N
    Huang C; Yang Y; Fu J; Wu J; Song H; Zhang X; Gao B; Chu PK; Huo K
    J Nanosci Nanotechnol; 2018 Jan; 18(1):30-38. PubMed ID: 29768807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Layered coating of ultraflexible graphene-based electrodes for high-performance in-plane quasi-solid-state micro-supercapacitors.
    Du J; Mu X; Zhao Y; Zhang Y; Zhang S; Huang B; Sheng Y; Xie Y; Zhang Z; Xie E
    Nanoscale; 2019 Aug; 11(30):14392-14399. PubMed ID: 31334526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible in-plane microsupercapacitors with electrospun NiFe2O4 nanofibers for portable sensing applications.
    Li L; Lou Z; Han W; Shen G
    Nanoscale; 2016 Aug; 8(32):14986-91. PubMed ID: 27466001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High Power In-Plane Micro-Supercapacitors Based on Mesoporous Polyaniline Patterned Graphene.
    Liu Z; Liu S; Dong R; Yang S; Lu H; Narita A; Feng X; Müllen K
    Small; 2017 Apr; 13(14):. PubMed ID: 28160399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sand-Milling Fabrication of Screen-Printable Graphene Composite Inks for High-Performance Planar Micro-Supercapacitors.
    Chen H; Chen S; Zhang Y; Ren H; Hu X; Bai Y
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56319-56329. PubMed ID: 33280375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bilayered microelectrodes based on electrochemically deposited MnO
    Haider WA; He L; Mirza HA; Tahir M; Khan AM; Owusu KA; Yang W; Wang Z; Mai L
    RSC Adv; 2020 May; 10(31):18245-18251. PubMed ID: 35517224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.