These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 35264156)

  • 1. Engineering Saccharomyces cerevisiae for the production and secretion of Affibody molecules.
    Gast V; Sandegren A; Dunås F; Ekblad S; Güler R; Thorén S; Tous Mohedano M; Molin M; Engqvist MKM; Siewers V
    Microb Cell Fact; 2022 Mar; 21(1):36. PubMed ID: 35264156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering.
    Chen Y; Xiao W; Wang Y; Liu H; Li X; Yuan Y
    Microb Cell Fact; 2016 Jun; 15(1):113. PubMed ID: 27329233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterologous production of levopimaric acid in Saccharomyces cerevisiae.
    Liu T; Zhang C; Lu W
    Microb Cell Fact; 2018 Jul; 17(1):114. PubMed ID: 30021574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inverse metabolic engineering for improving protein content in Saccharomyces cerevisiae.
    Lee YO; Do SH; Won JY; Chin YW; Chewaka LS; Park BR; Kim SJ; Kim SK
    Biotechnol J; 2023 Sep; 18(9):e2300014. PubMed ID: 37272298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An engineered autotransporter-based surface expression vector enables efficient display of Affibody molecules on OmpT-negative E. coli as well as protease-mediated secretion in OmpT-positive strains.
    Fleetwood F; Andersson KG; Ståhl S; Löfblom J
    Microb Cell Fact; 2014 Dec; 13():179. PubMed ID: 25547008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of Saccharomyces cerevisiae for production of spermidine under optimal culture conditions.
    Kim SK; Jo JH; Park YC; Jin YS; Seo JH
    Enzyme Microb Technol; 2017 Jun; 101():30-35. PubMed ID: 28433188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosensor-Enabled Directed Evolution to Improve Muconic Acid Production in Saccharomyces cerevisiae.
    Leavitt JM; Wagner JM; Tu CC; Tong A; Liu Y; Alper HS
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28296355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene.
    Ma T; Shi B; Ye Z; Li X; Liu M; Chen Y; Xia J; Nielsen J; Deng Z; Liu T
    Metab Eng; 2019 Mar; 52():134-142. PubMed ID: 30471360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterologous biosynthesis and manipulation of crocetin in Saccharomyces cerevisiae.
    Chai F; Wang Y; Mei X; Yao M; Chen Y; Liu H; Xiao W; Yuan Y
    Microb Cell Fact; 2017 Mar; 16(1):54. PubMed ID: 28356104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells.
    Sakamoto T; Hasunuma T; Hori Y; Yamada R; Kondo A
    J Biotechnol; 2012 Apr; 158(4):203-10. PubMed ID: 21741417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of a human milk oligosaccharide 2'-fucosyllactose by metabolically engineered Saccharomyces cerevisiae.
    Yu S; Liu JJ; Yun EJ; Kwak S; Kim KH; Jin YS
    Microb Cell Fact; 2018 Jun; 17(1):101. PubMed ID: 29950173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering Saccharomyces cerevisiae for isoprenol production.
    Kim J; Baidoo EEK; Amer B; Mukhopadhyay A; Adams PD; Simmons BA; Lee TS
    Metab Eng; 2021 Mar; 64():154-166. PubMed ID: 33581331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae.
    Kim SJ; Seo SO; Park YC; Jin YS; Seo JH
    J Biotechnol; 2014 Dec; 192 Pt B():376-82. PubMed ID: 24480571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol.
    Lian J; Chao R; Zhao H
    Metab Eng; 2014 May; 23():92-9. PubMed ID: 24525332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic Engineering of
    Guo J; Sun X; Yuan Y; Chen Q; Ou Z; Deng Z; Ma T; Liu T
    J Agric Food Chem; 2023 May; 71(19):7408-7417. PubMed ID: 37154424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic Metabolic Engineering of
    Shi B; Ma T; Ye Z; Li X; Huang Y; Zhou Z; Ding Y; Deng Z; Liu T
    J Agric Food Chem; 2019 Oct; 67(40):11148-11157. PubMed ID: 31532654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae].
    Qu N; He XP; Guo XN; Liu N; Zhang BR
    Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):38-42. PubMed ID: 16579462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering strategy of yeast metabolism for higher alcohol production.
    Matsuda F; Furusawa C; Kondo T; Ishii J; Shimizu H; Kondo A
    Microb Cell Fact; 2011 Sep; 10():70. PubMed ID: 21902829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioprocess optimization for the overproduction of catalytic domain of ubiquitin-like protease 1 (Ulp1) from S. cerevisiae in E. coli fed-batch culture.
    Babbal ; Adivitiya ; Mohanty S; Khasa YP
    Enzyme Microb Technol; 2019 Jan; 120():98-109. PubMed ID: 30396406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orthogonal Engineering of Biosynthetic Pathway for Efficient Production of Limonene in Saccharomyces cerevisiae.
    Cheng S; Liu X; Jiang G; Wu J; Zhang JL; Lei D; Yuan YJ; Qiao J; Zhao GR
    ACS Synth Biol; 2019 May; 8(5):968-975. PubMed ID: 31063692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.