These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 35264184)
1. Quantification of biological range uncertainties in patients treated at the Krakow proton therapy centre. Garbacz M; Gajewski J; Durante M; Kisielewicz K; Krah N; Kopeć R; Olko P; Patera V; Rinaldi I; Rydygier M; Schiavi A; Scifoni E; Skóra T; Skrzypek A; Tommasino F; Rucinski A Radiat Oncol; 2022 Mar; 17(1):50. PubMed ID: 35264184 [TBL] [Abstract][Full Text] [Related]
2. Quantifying the Dosimetric Impact of Proton Range Uncertainties on RBE-Weighted Dose Distributions in Intensity-Modulated Proton Therapy for Bilateral Head and Neck Cancer. Rana S; Manthala Padannayil N; Tran L; Rosenfeld AB; Saeed H; Kasper M Curr Oncol; 2024 Jun; 31(7):3690-3697. PubMed ID: 39057144 [TBL] [Abstract][Full Text] [Related]
3. Impact of grid size on uniform scanning and IMPT plans in XiO treatment planning system for brain cancer. Rana S; Zheng Y J Appl Clin Med Phys; 2015 Sep; 16(5):447–456. PubMed ID: 26699310 [TBL] [Abstract][Full Text] [Related]
4. Comparative photon and proton dosimetry for patients with mediastinal lymphoma in the era of Monte Carlo treatment planning and variable relative biological effectiveness. Tseng YD; Maes SM; Kicska G; Sponsellor P; Traneus E; Wong T; Stewart RD; Saini J Radiat Oncol; 2019 Dec; 14(1):243. PubMed ID: 31888769 [TBL] [Abstract][Full Text] [Related]
5. Introducing Proton Track-End Objectives in Intensity Modulated Proton Therapy Optimization to Reduce Linear Energy Transfer and Relative Biological Effectiveness in Critical Structures. Traneus E; Ödén J Int J Radiat Oncol Biol Phys; 2019 Mar; 103(3):747-757. PubMed ID: 30395906 [TBL] [Abstract][Full Text] [Related]
6. Study of relationship between dose, LET and the risk of brain necrosis after proton therapy for skull base tumors. Garbacz M; Cordoni FG; Durante M; Gajewski J; Kisielewicz K; Krah N; Kopeć R; Olko P; Patera V; Rinaldi I; Rydygier M; Schiavi A; Scifoni E; Skóra T; Tommasino F; Rucinski A Radiother Oncol; 2021 Oct; 163():143-149. PubMed ID: 34461183 [TBL] [Abstract][Full Text] [Related]
7. Reoptimization of Intensity Modulated Proton Therapy Plans Based on Linear Energy Transfer. Unkelbach J; Botas P; Giantsoudi D; Gorissen BL; Paganetti H Int J Radiat Oncol Biol Phys; 2016 Dec; 96(5):1097-1106. PubMed ID: 27869082 [TBL] [Abstract][Full Text] [Related]
8. Dosimetric benefits of robust treatment planning for intensity modulated proton therapy for base-of-skull cancers. Liu W; Mohan R; Park P; Liu Z; Li H; Li X; Li Y; Wu R; Sahoo N; Dong L; Zhu XR; Grosshans DR Pract Radiat Oncol; 2014; 4(6):384-91. PubMed ID: 25407859 [TBL] [Abstract][Full Text] [Related]
10. Can differences in linear energy transfer and thus relative biological effectiveness compromise the dosimetric advantage of intensity-modulated proton therapy as compared to passively scattered proton therapy? Giantsoudi D; Adams J; MacDonald S; Paganetti H Acta Oncol; 2018 Sep; 57(9):1259-1264. PubMed ID: 29726722 [TBL] [Abstract][Full Text] [Related]
11. Radiobiological and dosimetric impact of RayStation pencil beam and Monte Carlo algorithms on intensity-modulated proton therapy breast cancer plans. Rana S; Greco K; Samuel EJJ; Bennouna J J Appl Clin Med Phys; 2019 Aug; 20(8):36-46. PubMed ID: 31343826 [TBL] [Abstract][Full Text] [Related]
12. Interlaced proton grid therapy - Linear energy transfer and relative biological effectiveness distributions. Henry T; Ödén J Phys Med; 2018 Dec; 56():81-89. PubMed ID: 30473384 [TBL] [Abstract][Full Text] [Related]
13. Can We Advance Proton Therapy for Prostate? Considering Alternative Beam Angles and Relative Biological Effectiveness Variations When Comparing Against Intensity Modulated Radiation Therapy. Underwood T; Giantsoudi D; Moteabbed M; Zietman A; Efstathiou J; Paganetti H; Lu HM Int J Radiat Oncol Biol Phys; 2016 May; 95(1):454-464. PubMed ID: 27084660 [TBL] [Abstract][Full Text] [Related]
14. Spatial correlation of linear energy transfer and relative biological effectiveness with suspected treatment-related toxicities following proton therapy for intracranial tumors. Ödén J; Toma-Dasu I; Witt Nyström P; Traneus E; Dasu A Med Phys; 2020 Feb; 47(2):342-351. PubMed ID: 31705671 [TBL] [Abstract][Full Text] [Related]
15. The impact of proton LET/RBE modeling and robustness analysis on base-of-skull and pediatric craniopharyngioma proton plans relative to VMAT. Gutierrez A; Rompokos V; Li K; Gillies C; D'Souza D; Solda F; Fersht N; Chang YC; Royle G; Amos RA; Underwood T Acta Oncol; 2019 Dec; 58(12):1765-1774. PubMed ID: 31429359 [No Abstract] [Full Text] [Related]
16. Is an analytical dose engine sufficient for intensity modulated proton therapy in lung cancer? Teoh S; Fiorini F; George B; Vallis KA; Van den Heuvel F Br J Radiol; 2020 Mar; 93(1107):20190583. PubMed ID: 31696729 [TBL] [Abstract][Full Text] [Related]
17. Inclusion of a variable RBE into proton and photon plan comparison for various fractionation schedules in prostate radiation therapy. Ödén J; Eriksson K; Toma-Dasu I Med Phys; 2017 Mar; 44(3):810-822. PubMed ID: 28107554 [TBL] [Abstract][Full Text] [Related]
18. Dosimetric impact of random spot positioning errors in intensity modulated proton therapy plans of small and large volume tumors. Arjunan M; Krishnan G; Sharma DS; M P N; Patro KC; Thiyagarajan R; Srinivas C; Jalali R Br J Radiol; 2021 Mar; 94(1119):20201031. PubMed ID: 33529057 [TBL] [Abstract][Full Text] [Related]
19. Hyperfractionated intensity-modulated proton therapy for pharyngeal cancer with variable relative biological effectiveness: A simulation study. Kasamatsu K; Matsuura T; Yasuda K; Miyazaki K; Takao S; Tamura M; Otsuka M; Uchinami Y; Aoyama H Med Phys; 2022 Dec; 49(12):7815-7825. PubMed ID: 36300598 [TBL] [Abstract][Full Text] [Related]