BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 35264206)

  • 1. Visualization of the process of a nanocarrier-mediated gene delivery: stabilization, endocytosis and endosomal escape of genes for intracellular spreading.
    Ma Z; Zheng Y; Chao Z; Chen H; Zhang Y; Yin M; Shen J; Yan S
    J Nanobiotechnology; 2022 Mar; 20(1):124. PubMed ID: 35264206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chitosan/dsRNA polyplex nanoparticles advance environmental RNA interference efficiency through activating clathrin-dependent endocytosis.
    Zhou H; Wan F; Jian Y; Guo F; Zhang M; Shi S; Yang L; Li S; Liu Y; Ding W
    Int J Biol Macromol; 2023 Dec; 253(Pt 4):127021. PubMed ID: 37741481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clathrin-dependent endocytosis plays a predominant role in cellular uptake of double-stranded RNA in the red flour beetle.
    Xiao D; Gao X; Xu J; Liang X; Li Q; Yao J; Zhu KY
    Insect Biochem Mol Biol; 2015 May; 60():68-77. PubMed ID: 25863352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticle-mediated double-stranded RNA delivery system: A promising approach for sustainable pest management.
    Yan S; Ren BY; Shen J
    Insect Sci; 2021 Feb; 28(1):21-34. PubMed ID: 32478473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of clathrin-dependent endocytosis in cellular dsRNA uptake in aphids.
    Ye C; Hu XS; Wang ZW; Wei D; Smagghe G; Christiaens O; Niu J; Wang JJ
    Insect Biochem Mol Biol; 2021 May; 132():103557. PubMed ID: 33639241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The involvement of clathrin-mediated endocytosis and two Sid-1-like transmembrane proteins in double-stranded RNA uptake in the Colorado potato beetle midgut.
    Cappelle K; de Oliveira CF; Van Eynde B; Christiaens O; Smagghe G
    Insect Mol Biol; 2016 Jun; 25(3):315-23. PubMed ID: 26959524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mysteries of insect RNAi: A focus on dsRNA uptake and transport.
    Vélez AM; Fishilevich E
    Pestic Biochem Physiol; 2018 Oct; 151():25-31. PubMed ID: 30704709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel paperclip double-stranded RNA structure demonstrates clathrin-independent uptake in the mosquito Aedes aegypti.
    Abbasi R; Heschuk D; Kim B; Whyard S
    Insect Biochem Mol Biol; 2020 Dec; 127():103492. PubMed ID: 33096213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction and application of star polycation nanocarrier-based microRNA delivery system in Arabidopsis and maize.
    Yang J; Yan S; Xie S; Yin M; Shen J; Li Z; Zhou Y; Duan L
    J Nanobiotechnology; 2022 May; 20(1):219. PubMed ID: 35525952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic Nanoscale RNAi Constructs as Pesticides for the Control of
    Lu Q; Cui H; Li W; Liu T; Chen Q; Yang Q
    J Agric Food Chem; 2022 Sep; 70(35):10762-10770. PubMed ID: 36000580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanisms influencing efficiency of RNA interference in insects.
    Cooper AM; Silver K; Zhang J; Park Y; Zhu KY
    Pest Manag Sci; 2019 Jan; 75(1):18-28. PubMed ID: 29931761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoparticle-mediated dsRNA delivery for precision insect pest control: a comprehensive review.
    Arjunan N; Thiruvengadam V; Sushil SN
    Mol Biol Rep; 2024 Feb; 51(1):355. PubMed ID: 38400844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clathrin mediated endocytosis is involved in the uptake of exogenous double-stranded RNA in the white mold phytopathogen Sclerotinia sclerotiorum.
    Wytinck N; Sullivan DS; Biggar KT; Crisostomo L; Pelka P; Belmonte MF; Whyard S
    Sci Rep; 2020 Jul; 10(1):12773. PubMed ID: 32728195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clathrin-dependent endocytosis is associated with RNAi response in the western corn rootworm, Diabrotica virgifera virgifera LeConte.
    Pinheiro DH; Vélez AM; Fishilevich E; Wang H; Carneiro NP; Valencia-Jiménez A; Valicente FH; Narva KE; Siegfried BD
    PLoS One; 2018; 13(8):e0201849. PubMed ID: 30092086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variation in RNAi efficacy among insect species is attributable to dsRNA degradation in vivo.
    Wang K; Peng Y; Pu J; Fu W; Wang J; Han Z
    Insect Biochem Mol Biol; 2016 Oct; 77():1-9. PubMed ID: 27449967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategies for enhancing the efficiency of RNA interference in insects.
    Silver K; Cooper AM; Zhu KY
    Pest Manag Sci; 2021 Jun; 77(6):2645-2658. PubMed ID: 33440063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel plasmid-Escherichia coli system produces large batch dsRNAs for insect gene silencing.
    Ma ZZ; Zhou H; Wei YL; Yan S; Shen J
    Pest Manag Sci; 2020 Jul; 76(7):2505-2512. PubMed ID: 32077251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in exogenous RNA delivery techniques for RNAi-mediated pest control.
    Adeyinka OS; Riaz S; Toufiq N; Yousaf I; Bhatti MU; Batcho A; Olajide AA; Nasir IA; Tabassum B
    Mol Biol Rep; 2020 Aug; 47(8):6309-6319. PubMed ID: 32696345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms, Applications, and Challenges of Insect RNA Interference.
    Zhu KY; Palli SR
    Annu Rev Entomol; 2020 Jan; 65():293-311. PubMed ID: 31610134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review.
    Huvenne H; Smagghe G
    J Insect Physiol; 2010 Mar; 56(3):227-35. PubMed ID: 19837076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.