These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35264587)

  • 1. Impact of urban structure on infectious disease spreading.
    Aguilar J; Bassolas A; Ghoshal G; Hazarie S; Kirkley A; Mazzoli M; Meloni S; Mimar S; Nicosia V; Ramasco JJ; Sadilek A
    Sci Rep; 2022 Mar; 12(1):3816. PubMed ID: 35264587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the influence of human mobility factors and spread prediction on early COVID-19 in the USA.
    Zheng Z; Xie Z; Qin Y; Wang K; Yu Y; Fu P
    BMC Public Health; 2021 Mar; 21(1):615. PubMed ID: 33781260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of mobility network properties on predicted epidemic dynamics in Dhaka and Bangkok.
    Brown TS; Engø-Monsen K; Kiang MV; Mahmud AS; Maude RJ; Buckee CO
    Epidemics; 2021 Jun; 35():100441. PubMed ID: 33667878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SARS-CoV-2 superspreading in cities vs the countryside.
    Eilersen A; Sneppen K
    APMIS; 2021 Jul; 129(7):401-407. PubMed ID: 33622024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Propagation dynamics and control policies of COVID-19 pandemic at early stages: Implications on future resurgence response.
    Dong N; Guan X; Zhang J; Zhou H; Zhang J; Liu X; Sun Y; Xu P; Li Q; Hao X
    Chaos; 2022 May; 32(5):053102. PubMed ID: 35649981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human mobility patterns predict divergent epidemic dynamics among cities.
    Dalziel BD; Pourbohloul B; Ellner SP
    Proc Biol Sci; 2013 Sep; 280(1766):20130763. PubMed ID: 23864593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exposome-based public health interventions for infectious diseases in urban settings.
    Andrianou XD; Pronk A; Galea KS; Stierum R; Loh M; Riccardo F; Pezzotti P; Makris KC
    Environ Int; 2021 Jan; 146():106246. PubMed ID: 33181410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Digital cities and the spread of COVID-19: Characterizing the impact of non-pharmaceutical interventions in five cities in Spain.
    Rodríguez JP; Aleta A; Moreno Y
    Front Public Health; 2023; 11():1122230. PubMed ID: 37033070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lockdowns result in changes in human mobility which may impact the epidemiologic dynamics of SARS-CoV-2.
    Kishore N; Kahn R; Martinez PP; De Salazar PM; Mahmud AS; Buckee CO
    Sci Rep; 2021 Mar; 11(1):6995. PubMed ID: 33772076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulating the impacts of interregional mobility restriction on the spatial spread of COVID-19 in Japan.
    Kondo K
    Sci Rep; 2021 Sep; 11(1):18951. PubMed ID: 34556681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel geo-hierarchical population mobility model for spatial spreading of resurgent epidemics.
    Topîrceanu A; Precup RE
    Sci Rep; 2021 Jul; 11(1):14341. PubMed ID: 34253835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial correlations in geographical spreading of COVID-19 in the United States.
    McMahon T; Chan A; Havlin S; Gallos LK
    Sci Rep; 2022 Jan; 12(1):699. PubMed ID: 35027627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fine-grained data reveal segregated mobility networks and opportunities for local containment of COVID-19.
    Fan C; Lee R; Yang Y; Mostafavi A
    Sci Rep; 2021 Aug; 11(1):16895. PubMed ID: 34413337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Policy and weather influences on mobility during the early US COVID-19 pandemic.
    Wu Y; Mooring TA; Linz M
    Proc Natl Acad Sci U S A; 2021 Jun; 118(22):. PubMed ID: 33986146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing hybrid spreading in metapopulations.
    Zhang C; Zhou S; Miller JC; Cox IJ; Chain BM
    Sci Rep; 2015 Apr; 5():9924. PubMed ID: 25923411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The correspondence between the structure of the terrestrial mobility network and the spreading of COVID-19 in Brazil.
    Freitas VLS; Konstantyner TCRO; Mendes JF; Sepetauskas CSDN; Santos LBL
    Cad Saude Publica; 2020; 36(9):e00184820. PubMed ID: 33027475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in notifiable infectious disease incidence in China during the COVID-19 pandemic.
    Geng MJ; Zhang HY; Yu LJ; Lv CL; Wang T; Che TL; Xu Q; Jiang BG; Chen JJ; Hay SI; Li ZJ; Gao GF; Wang LP; Yang Y; Fang LQ; Liu W
    Nat Commun; 2021 Nov; 12(1):6923. PubMed ID: 34836947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity-based epidemic propagation and contact network scaling in auto-dependent metropolitan areas.
    Kumar N; Oke J; Nahmias-Biran BH
    Sci Rep; 2021 Nov; 11(1):22665. PubMed ID: 34811414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A single-agent extension of the SIR model describes the impact of mobility restrictions on the COVID-19 epidemic.
    Paoluzzi M; Gnan N; Grassi F; Salvetti M; Vanacore N; Crisanti A
    Sci Rep; 2021 Dec; 11(1):24467. PubMed ID: 34963680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of health geography modeling to understand early dispersion of COVID-19 in São Paulo, Brazil.
    Fortaleza CMCB; Guimarães RB; Catão RC; Ferreira CP; Berg de Almeida G; Nogueira Vilches T; Pugliesi E
    PLoS One; 2021; 16(1):e0245051. PubMed ID: 33411768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.