BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 35264690)

  • 21. Genomic Manipulations of the Diazotroph Azotobacter vinelandii.
    Dos Santos PC
    Methods Mol Biol; 2019; 1876():91-109. PubMed ID: 30317476
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nitrogenase resurrection and the evolution of a singular enzymatic mechanism.
    Garcia AK; Harris DF; Rivier AJ; Carruthers BM; Pinochet-Barros A; Seefeldt LC; Kaçar B
    Elife; 2023 Feb; 12():. PubMed ID: 36799917
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rnf1 is the primary electron source to nitrogenase in a high-ammonium-accumulating strain of Azotobacter vinelandii.
    Barney BM; Plunkett MH
    Appl Microbiol Biotechnol; 2022 Aug; 106(13-16):5051-5061. PubMed ID: 35804159
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interactions between paralogous bacterial enhancer-binding proteins enable metal-dependent regulation of alternative nitrogenases in Azotobacter vinelandii.
    Appia-Ayme C; Little R; Chandra G; de Oliveira Martins C; Bueno Batista M; Dixon R
    Mol Microbiol; 2022 Jul; 118(1-2):105-124. PubMed ID: 35718936
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molybdenum trafficking for nitrogen fixation.
    Hernandez JA; George SJ; Rubio LM
    Biochemistry; 2009 Oct; 48(41):9711-21. PubMed ID: 19772354
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Key factors affecting ammonium production by an Azotobacter vinelandii strain deregulated for biological nitrogen fixation.
    Plunkett MH; Knutson CM; Barney BM
    Microb Cell Fact; 2020 May; 19(1):107. PubMed ID: 32429912
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Co-ordination and fine-tuning of nitrogen fixation in Azotobacter vinelandii.
    Dos Santos PC; Dean DR
    Mol Microbiol; 2011 Mar; 79(5):1132-5. PubMed ID: 21338415
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aerobic nitrogen-fixing bacteria for hydrogen and ammonium production: current state and perspectives.
    Barney BM
    Appl Microbiol Biotechnol; 2020 Feb; 104(4):1383-1399. PubMed ID: 31879824
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of oxygen on formation and structure of Azotobacter vinelandii alginate and its role in protecting nitrogenase.
    Sabra W; Zeng AP; Lünsdorf H; Deckwer WD
    Appl Environ Microbiol; 2000 Sep; 66(9):4037-44. PubMed ID: 10966426
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rnf and Fix Have Specific Roles during Aerobic Nitrogen Fixation in Azotobacter vinelandii.
    Alleman AB; Garcia Costas A; Mus F; Peters JW
    Appl Environ Microbiol; 2022 Sep; 88(17):e0104922. PubMed ID: 36000884
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Siderophore production in Azotobacter vinelandii in response to Fe-, Mo- and V-limitation.
    McRose DL; Baars O; Morel FMM; Kraepiel AML
    Environ Microbiol; 2017 Sep; 19(9):3595-3605. PubMed ID: 28703469
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The In Vivo Potential-Regulated Protective Protein of Nitrogenase in Azotobacter vinelandii Supports Aerobic Bioelectrochemical Dinitrogen Reduction In Vitro.
    Milton RD; Cai R; Sahin S; Abdellaoui S; Alkotaini B; Leech D; Minteer SD
    J Am Chem Soc; 2017 Jul; 139(26):9044-9052. PubMed ID: 28595003
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dependence of oxygen-tolerant nitrogenase activity on divalent cations in Azotobacter vinelandii.
    Peterson JB
    J Bacteriol; 1992 May; 174(10):3399-402. PubMed ID: 1577706
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automated Laboratory Growth Assessment and Maintenance of Azotobacter vinelandii.
    Carruthers BM; Garcia AK; Rivier A; Kacar B
    Curr Protoc; 2021 Mar; 1(3):e57. PubMed ID: 33656286
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nitrogenase Assembly: Strategies and Procedures.
    Sickerman NS; Hu Y; Ribbe MW
    Methods Enzymol; 2017; 595():261-302. PubMed ID: 28882203
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A low-potential terminal oxidase associated with the iron-only nitrogenase from the nitrogen-fixing bacterium
    Varghese F; Kabasakal BV; Cotton CAR; Schumacher J; Rutherford AW; Fantuzzi A; Murray JW
    J Biol Chem; 2019 Jun; 294(24):9367-9376. PubMed ID: 31043481
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detection of alternative nitrogenases in aerobic gram-negative nitrogen-fixing bacteria.
    Fallik E; Chan YK; Robson RL
    J Bacteriol; 1991 Jan; 173(1):365-71. PubMed ID: 1987127
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The flavin transferase ApbE flavinylates the ferredoxin:NAD+-oxidoreductase Rnf required for N2 fixation in Azotobacter vinelandii.
    Bertsova YV; Serebryakova MV; Baykov AA; Bogachev AV
    FEMS Microbiol Lett; 2021 Oct; 368(18):. PubMed ID: 34610116
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression of the nifBfdxNnifOQ region of Azotobacter vinelandii and its role in nitrogenase activity.
    Rodríguez-Quiñones F; Bosch R; Imperial J
    J Bacteriol; 1993 May; 175(10):2926-35. PubMed ID: 8491713
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mutagenesis studies of the FeSII protein of Azotobacter vinelandii: roles of histidine and lysine residues in the protection of nitrogenase from oxygen damage.
    Lou J; Moshiri F; Johnson MK; Lafferty ME; Sorkin DL; Miller A; Maier RJ
    Biochemistry; 1999 Apr; 38(17):5563-71. PubMed ID: 10220344
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.