These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35264798)

  • 21. Aerodynamic yawing moment characteristics of bird wings.
    Sachs G
    J Theor Biol; 2005 Jun; 234(4):471-8. PubMed ID: 15808868
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Joint extension speed dictates bio-inspired morphing trajectories for optimal longitudinal flight dynamics.
    Harvey C
    J R Soc Interface; 2024 Apr; 21(213):20230734. PubMed ID: 38654630
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of wing twist in slow-speed flapping flight of birds: trading brute force against efficiency.
    Thielicke W; Stamhuis EJ
    Bioinspir Biomim; 2018 Aug; 13(5):056015. PubMed ID: 30043756
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficiency of lift production in flapping and gliding flight of swifts.
    Henningsson P; Hedenström A; Bomphrey RJ
    PLoS One; 2014; 9(2):e90170. PubMed ID: 24587260
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flight mechanics and control of escape manoeuvres in hummingbirds. II. Aerodynamic force production, flight control and performance limitations.
    Cheng B; Tobalske BW; Powers DR; Hedrick TL; Wang Y; Wethington SM; Chiu GT; Deng X
    J Exp Biol; 2016 Nov; 219(Pt 22):3532-3543. PubMed ID: 27595849
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Asymmetries in wing inertial and aerodynamic torques contribute to steering in flying insects.
    Jankauski M; Daniel TL; Shen IY
    Bioinspir Biomim; 2017 Jun; 12(4):046001. PubMed ID: 28474606
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pigeons produce aerodynamic torques through changes in wing trajectory during low speed aerial turns.
    Ros IG; Badger MA; Pierson AN; Bassman LC; Biewener AA
    J Exp Biol; 2015 Feb; 218(Pt 3):480-90. PubMed ID: 25452503
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Folding in and out: passive morphing in flapping wings.
    Stowers AK; Lentink D
    Bioinspir Biomim; 2015 Mar; 10(2):025001. PubMed ID: 25807583
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Into thin air: Contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta.
    Combes SA; Daniel TL
    J Exp Biol; 2003 Sep; 206(Pt 17):2999-3006. PubMed ID: 12878668
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Raptor wing morphing with flight speed.
    Cheney JA; Stevenson JPJ; Durston NE; Maeda M; Song J; Megson-Smith DA; Windsor SP; Usherwood JR; Bomphrey RJ
    J R Soc Interface; 2021 Jul; 18(180):20210349. PubMed ID: 34255986
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting power-optimal kinematics of avian wings.
    Parslew B
    J R Soc Interface; 2015 Jan; 12(102):20140953. PubMed ID: 25392398
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A chordwise offset of the wing-pitch axis enhances rotational aerodynamic forces on insect wings: a numerical study.
    van Veen WG; van Leeuwen JL; Muijres FT
    J R Soc Interface; 2019 Jun; 16(155):20190118. PubMed ID: 31213176
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion.
    Sun M; Wu JH
    J Exp Biol; 2003 Sep; 206(Pt 17):3065-83. PubMed ID: 12878674
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wings as inertial appendages: how bats recover from aerial stumbles.
    Boerma DB; Breuer KS; Treskatis TL; Swartz SM
    J Exp Biol; 2019 Oct; 222(Pt 20):. PubMed ID: 31537651
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development and flight performance of a biologically-inspired tailless flapping-wing micro air vehicle with wing stroke plane modulation.
    Nguyen QV; Chan WL
    Bioinspir Biomim; 2018 Dec; 14(1):016015. PubMed ID: 30523879
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Attitude control system for a lightweight flapping wing MAV.
    Tijmons S; Karásek M; de Croon G
    Bioinspir Biomim; 2018 Jul; 13(5):056004. PubMed ID: 29537389
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Animal flight dynamics II. Longitudinal stability in flapping flight.
    Taylor GK; Thomas AL
    J Theor Biol; 2002 Feb; 214(3):351-70. PubMed ID: 11846595
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic flight stability of a hovering model dragonfly.
    Liang B; Sun M
    J Theor Biol; 2014 May; 348():100-12. PubMed ID: 24486234
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Avian whiffling-inspired gaps provide an alternative method for roll control.
    Sigrest P; Inman DJ
    Bioinspir Biomim; 2022 Jun; 17(4):. PubMed ID: 35609597
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wing inertia as a cause of aerodynamically uneconomical flight with high angles of attack in hovering insects.
    Phan HV; Park HC
    J Exp Biol; 2018 Oct; 221(Pt 19):. PubMed ID: 30111558
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.