These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 35264798)
41. Low speed maneuvering flight of the rose-breasted cockatoo (Eolophus roseicapillus). II. Inertial and aerodynamic reorientation. Hedrick TL; Usherwood JR; Biewener AA J Exp Biol; 2007 Jun; 210(Pt 11):1912-24. PubMed ID: 17515417 [TBL] [Abstract][Full Text] [Related]
42. Hovering of model insects: simulation by coupling equations of motion with Navier-Stokes equations. Wu JH; Zhang YL; Sun M J Exp Biol; 2009 Oct; 212(Pt 20):3313-29. PubMed ID: 19801436 [TBL] [Abstract][Full Text] [Related]
43. Load alleviation of feather-inspired compliant airfoils for instantaneous flow control. Gamble LL; Harvey C; Inman DJ Bioinspir Biomim; 2020 Oct; 15(5):. PubMed ID: 32521517 [TBL] [Abstract][Full Text] [Related]
44. A tale of two tails: developing an avian inspired morphing actuator for yaw control and stability. Gamble LL; Inman DJ Bioinspir Biomim; 2018 Feb; 13(2):026008. PubMed ID: 29300173 [TBL] [Abstract][Full Text] [Related]
45. How do birds' tails work? Delta-wing theory fails to predict tail shape during flight. Evans MR; Rosén M; Park KJ; Hedenström A Proc Biol Sci; 2002 May; 269(1495):1053-7. PubMed ID: 12028763 [TBL] [Abstract][Full Text] [Related]
46. Functional Morphology of Gliding Flight II. Morphology Follows Predictions of Gliding Performance. Rader JA; Hedrick TL; He Y; Waldrop LD Integr Comp Biol; 2020 Nov; 60(5):1297-1308. PubMed ID: 33184652 [TBL] [Abstract][Full Text] [Related]
47. Upstroke wing flexion and the inertial cost of bat flight. Riskin DK; Bergou A; Breuer KS; Swartz SM Proc Biol Sci; 2012 Aug; 279(1740):2945-50. PubMed ID: 22496186 [TBL] [Abstract][Full Text] [Related]
48. Muscle function in avian flight: achieving power and control. Biewener AA Philos Trans R Soc Lond B Biol Sci; 2011 May; 366(1570):1496-506. PubMed ID: 21502121 [TBL] [Abstract][Full Text] [Related]
49. Effect of slotted wing tips on yawing moment characteristics. Sachs G; Moelyadi MA J Theor Biol; 2006 Mar; 239(1):93-100. PubMed ID: 16199060 [TBL] [Abstract][Full Text] [Related]
50. Wing tucks are a response to atmospheric turbulence in the soaring flight of the steppe eagle Aquila nipalensis. Reynolds KV; Thomas AL; Taylor GK J R Soc Interface; 2014 Dec; 11(101):20140645. PubMed ID: 25320064 [TBL] [Abstract][Full Text] [Related]
51. A Quantitative and Comparative Analysis of the Muscle Architecture of the Forelimb Myology of Diurnal Birds of Prey (Order Accipitriformes and Falconiformes). Bribiesca-Contreras F; Parslew B; Sellers WI Anat Rec (Hoboken); 2019 Oct; 302(10):1808-1823. PubMed ID: 31177616 [TBL] [Abstract][Full Text] [Related]
52. A critical ligamentous mechanism in the evolution of avian flight. Baier DB; Gatesy SM; Jenkins FA Nature; 2007 Jan; 445(7125):307-10. PubMed ID: 17173029 [TBL] [Abstract][Full Text] [Related]
53. Hovering and forward flight of the hawkmoth Manduca sexta: trim search and 6-DOF dynamic stability characterization. Kim JK; Han JS; Lee JS; Han JH Bioinspir Biomim; 2015 Sep; 10(5):056012. PubMed ID: 26414442 [TBL] [Abstract][Full Text] [Related]
54. Modulation of Flight Muscle Recruitment and Wing Rotation Enables Hummingbirds to Mitigate Aerial Roll Perturbations. Ravi S; Noda R; Gagliardi S; Kolomenskiy D; Combes S; Liu H; Biewener AA; Konow N Curr Biol; 2020 Jan; 30(2):187-195.e4. PubMed ID: 31902723 [TBL] [Abstract][Full Text] [Related]
55. Role of wing inertia in maneuvering bat flights. Rahman A; Tafti D Bioinspir Biomim; 2022 Nov; 18(1):. PubMed ID: 36322982 [TBL] [Abstract][Full Text] [Related]
56. Birds both avoid and control collisions by harnessing visually guided force vectoring. Chin DD; Lentink D J R Soc Interface; 2022 Jun; 19(191):20210947. PubMed ID: 35702862 [TBL] [Abstract][Full Text] [Related]
57. Intra-specific variation in wing morphology and its impact on take-off performance in blue tits (Cyanistes caeruleus) during escape flights. McFarlane L; Altringham JD; Askew GN J Exp Biol; 2016 May; 219(Pt 9):1369-77. PubMed ID: 26994175 [TBL] [Abstract][Full Text] [Related]
58. Design optimization and experimental study of a novel mechanism for a hover-able bionic flapping-wing micro air vehicle. Deng H; Xiao S; Huang B; Yang L; Xiang X; Ding X Bioinspir Biomim; 2020 Dec; 16(2):. PubMed ID: 33075759 [No Abstract] [Full Text] [Related]
59. Wing-pitching mechanism of hovering Ruby-throated hummingbirds. Song J; Luo H; Hedrick TL Bioinspir Biomim; 2015 Jan; 10(1):016007. PubMed ID: 25599381 [TBL] [Abstract][Full Text] [Related]
60. Passive mechanism of pitch recoil in flapping insect wings. Ishihara D; Horie T Bioinspir Biomim; 2016 Dec; 12(1):016008. PubMed ID: 27995899 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]