These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35264936)

  • 1. On the Similarity Between the Reinforcing and the Discriminative Properties of Intracranial Self-Stimulation.
    Velazquez-Martinez DN; Pacheco-Gomez BL; Toscano-Zapien AL; Lopez-Guzman MA; Velazquez-Lopez D
    Front Behav Neurosci; 2022; 16():799015. PubMed ID: 35264936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of progressive hold and progressive response schedules of reinforcement.
    Alvarez-Sekely CS; Toscano-Zapien AL; Salles-Ize P; Zepeda-Ruiz WA; Lopez-Guzman MA; Velazquez-Martinez DN
    Behav Processes; 2023 Feb; 205():104822. PubMed ID: 36669746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of amphetamine and nomifensine on intracranial self-stimulation discrimination behavior in rats.
    Schaefer GJ; Michael RP
    Pharmacol Biochem Behav; 1992 Feb; 41(2):391-7. PubMed ID: 1574530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of pimozide, across doses and within sessions, on discriminated lever release performance in rats.
    Skjoldager P; Fowler SC
    Psychopharmacology (Berl); 1988; 96(1):21-8. PubMed ID: 3147474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous rate-independent and rate-dependent assessment of intracranial self-stimulation: evidence for the direct involvement of dopamine in brain reinforcement mechanisms.
    Zarevics P; Setler PE
    Brain Res; 1979 Jun; 169(3):499-512. PubMed ID: 312681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discriminative properties of aversive electrical stimulations of the so-called "mesencephalic locomotor region": a parametric study.
    Depoortere R; Sandner G; Di Scala G
    Physiol Behav; 1991 Feb; 49(2):339-45. PubMed ID: 2062906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cue-evoked dopamine release in the nucleus accumbens shell tracks reinforcer magnitude during intracranial self-stimulation.
    Beyene M; Carelli RM; Wightman RM
    Neuroscience; 2010 Sep; 169(4):1682-8. PubMed ID: 20600644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phencyclidine established as a discriminative stimulus using ethanol as a reinforcer.
    Beardsley PM; Anthony EW; Lopez OT
    Behav Pharmacol; 1992 Oct; 3(5):497-505. PubMed ID: 11224152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of variations of reinforcement magnitude on alcohol discrimination using intracranial stimulation as the reinforcer.
    De Witte P; Gewiss M
    Physiol Behav; 1986; 36(6):1005-8. PubMed ID: 3725901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discriminating between reward and performance: a critical review of intracranial self-stimulation methodology.
    Liebman JM
    Neurosci Biobehav Rev; 1983; 7(1):45-72. PubMed ID: 6132357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acquisition of nicotine discrimination and discriminative stimulus effects of nicotine in rats chronically exposed to caffeine.
    Gasior M; Shoaib M; Yasar S; Jaszyna M; Goldberg SR
    J Pharmacol Exp Ther; 1999 Mar; 288(3):1053-73. PubMed ID: 10027843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relation between discriminative and reinforcing effects of midazolam, pentobarbital, chlordiazepoxide, zolpidem, and imidazenil in baboons.
    Ator NA
    Psychopharmacology (Berl); 2002 Oct; 163(3-4):477-87. PubMed ID: 12373448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The discriminative stimulus properties and detection thresholds of intracranial self-stimulation: effects of d-amphetamine, morphine, and haloperidol.
    Schaefer GJ; Michael RP
    Psychopharmacology (Berl); 1985; 85(3):289-94. PubMed ID: 3923515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lateral hypothalamus neuron involvement in integration of natural and artificial rewards and cue signals.
    Nakamura K; Ono T
    J Neurophysiol; 1986 Jan; 55(1):163-81. PubMed ID: 3512788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concurrent generalization gradients for food-controlled and shock-controlled behavior.
    HEARST E
    J Exp Anal Behav; 1962 Jan; 5(1):19-31. PubMed ID: 13905772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increasing the work requirements lowers the threshold of naloxone for reducing self-stimulation in the midbrain of rats.
    West CH; Schaefer GJ; Michael RP
    Pharmacol Biochem Behav; 1983 May; 18(5):705-10. PubMed ID: 6856645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perceptual cues of reinforcing brain stimulations in the postero-lateral area of the hypothalamus.
    De Witte P
    Physiol Behav; 1982 Mar; 28(3):447-55. PubMed ID: 7079360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypothalamic neuron involvement in integration of reward, aversion, and cue signals.
    Ono T; Nakamura K; Nishijo H; Fukuda M
    J Neurophysiol; 1986 Jul; 56(1):63-79. PubMed ID: 3746401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the aversiveness of intracranial stimulation.
    Atrens DM; Becker FT
    Psychopharmacologia; 1975 Oct; 44(2):159-63. PubMed ID: 1197585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A cellular mechanism of reward-related learning.
    Reynolds JN; Hyland BI; Wickens JR
    Nature; 2001 Sep; 413(6851):67-70. PubMed ID: 11544526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.