These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 35265092)

  • 1. Genome-Wide Expression Analysis of Root Tips in Contrasting Rice Genotypes Revealed Novel Candidate Genes for Water Stress Adaptation.
    Abdirad S; Ghaffari MR; Majd A; Irian S; Soleymaniniya A; Daryani P; Koobaz P; Shobbar ZS; Farsad LK; Yazdanpanah P; Sadri A; Mirzaei M; Ghorbanzadeh Z; Kazemi M; Hadidi N; Haynes PA; Salekdeh GH
    Front Plant Sci; 2022; 13():792079. PubMed ID: 35265092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic analysis of the meristematic root zone in contrasting genotypes reveals new insights in drought tolerance in rice.
    Abdirad S; Wu Y; Ghorbanzadeh Z; Tazangi SE; Amirkhani A; Fitzhenry MJ; Kazemi M; Ghaffari MR; Koobaz P; Zeinalabedini M; Habibpourmehraban F; Masoomi-Aladizgeh F; Atwell BJ; Mirzaei M; Salekdeh GH; Haynes PA
    Proteomics; 2022 Nov; 22(21):e2200100. PubMed ID: 35920597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative metabolomics of root-tips reveals distinct metabolic pathways conferring drought tolerance in contrasting genotypes of rice.
    Ghorbanzadeh Z; Hamid R; Jacob F; Zeinalabedini M; Salekdeh GH; Ghaffari MR
    BMC Genomics; 2023 Mar; 24(1):152. PubMed ID: 36973662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential adaptation strategies to different levels of soil water deficit in two upland and lowland genotypes of rice: a physiological and metabolic approach.
    Abdirad S; Majd A; Irian S; Hadidi N; Hosseini Salekdeh G
    J Sci Food Agric; 2020 Mar; 100(4):1458-1469. PubMed ID: 31765006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pinpointing genomic regions associated with root system architecture in rice through an integrative meta-analysis approach.
    Daryani P; Darzi Ramandi H; Dezhsetan S; Mirdar Mansuri R; Hosseini Salekdeh G; Shobbar ZS
    Theor Appl Genet; 2022 Jan; 135(1):81-106. PubMed ID: 34623472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative transcriptome analysis of AP2/EREBP gene family under normal and hormone treatments, and under two drought stresses in NILs setup by Aday Selection and IR64.
    Sharoni AM; Nuruzzaman M; Satoh K; Moumeni A; Attia K; Venuprasad R; Serraj R; Kumar A; Leung H; Islam AK; Kikuchi S
    Mol Genet Genomics; 2012 Jan; 287(1):1-19. PubMed ID: 22102215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Root system architecture, physiological analysis and dynamic transcriptomics unravel the drought-responsive traits in rice genotypes.
    Tiwari P; Srivastava D; Chauhan AS; Indoliya Y; Singh PK; Tiwari S; Fatima T; Mishra SK; Dwivedi S; Agarwal L; Singh PC; Asif MH; Tripathi RD; Shirke PA; Chakrabarty D; Chauhan PS; Nautiyal CS
    Ecotoxicol Environ Saf; 2021 Jan; 207():111252. PubMed ID: 32916530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of Allelic Imbalance in Rice Hybrids Under Water Stress and Association of Asymmetrically Expressed Genes with Drought-Response QTLs.
    Ereful NC; Liu LY; Tsai E; Kao SM; Dixit S; Mauleon R; Malabanan K; Thomson M; Laurena A; Lee D; Mackay I; Greenland A; Powell W; Leung H
    Rice (N Y); 2016 Dec; 9(1):50. PubMed ID: 27671164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic, physiological, and gene expression analyses reveal that multiple QTL enhance yield of rice mega-variety IR64 under drought.
    Swamy BP; Ahmed HU; Henry A; Mauleon R; Dixit S; Vikram P; Tilatto R; Verulkar SB; Perraju P; Mandal NP; Variar M; Robin S; Chandrababu R; Singh ON; Dwivedi JL; Das SP; Mishra KK; Yadaw RB; Aditya TL; Karmakar B; Satoh K; Moumeni A; Kikuchi S; Leung H; Kumar A
    PLoS One; 2013; 8(5):e62795. PubMed ID: 23667521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative transcriptome profiles of the WRKY gene family under control, hormone-treated, and drought conditions in near-isogenic rice lines reveal differential, tissue specific gene activation.
    Nuruzzaman M; Sharoni AM; Satoh K; Kumar A; Leung H; Kikuchi S
    J Plant Physiol; 2014 Jan; 171(1):2-13. PubMed ID: 24189206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dro1, a major QTL involved in deep rooting of rice under upland field conditions.
    Uga Y; Okuno K; Yano M
    J Exp Bot; 2011 May; 62(8):2485-94. PubMed ID: 21212298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whole plant responses, key processes, and adaptation to drought stress: the case of rice.
    Lafitte HR; Yongsheng G; Yan S; Li ZK
    J Exp Bot; 2007; 58(2):169-75. PubMed ID: 16997901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of Dual Stress Transcriptomes and Major QTLs from a Pair of Genotypes Contrasting for Drought and Chronic Nitrogen Starvation Identifies Key Stress Responsive Genes in Rice.
    Sevanthi AM; Sinha SK; V S; Rani M; Saini MR; Kumari S; Kaushik M; Prakash C; K V; Singh GP; Mohapatra T; Mandal PK
    Rice (N Y); 2021 Jun; 14(1):49. PubMed ID: 34089405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative transcriptomic analysis of roots of contrasting Gossypium herbaceum genotypes revealing adaptation to drought.
    Ranjan A; Pandey N; Lakhwani D; Dubey NK; Pathre UV; Sawant SV
    BMC Genomics; 2012 Nov; 13():680. PubMed ID: 23194183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Responses of grapevine rootstocks to drought through altered root system architecture and root transcriptomic regulations.
    Yıldırım K; Yağcı A; Sucu S; Tunç S
    Plant Physiol Biochem; 2018 Jun; 127():256-268. PubMed ID: 29627732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative trait loci for root-penetration ability and root thickness in rice: comparison of genetic backgrounds.
    Zheng HG; Babu RC; Pathan MS; Ali L; Huang N; Courtois B; Nguyen HT
    Genome; 2000 Feb; 43(1):53-61. PubMed ID: 10701113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive gene expression analysis of the NAC gene family under normal growth conditions, hormone treatment, and drought stress conditions in rice using near-isogenic lines (NILs) generated from crossing Aday Selection (drought tolerant) and IR64.
    Nuruzzaman M; Sharoni AM; Satoh K; Moumeni A; Venuprasad R; Serraj R; Kumar A; Leung H; Attia K; Kikuchi S
    Mol Genet Genomics; 2012 May; 287(5):389-410. PubMed ID: 22526427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping QTLs and candidate genes for rice root traits under different water-supply conditions and comparative analysis across three populations.
    Zheng BS; Yang L; Zhang WP; Mao CZ; Wu YR; Yi KK; Liu FY; Wu P
    Theor Appl Genet; 2003 Nov; 107(8):1505-15. PubMed ID: 12920516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional image analysis specifies the root distribution for drought avoidance in the early growth stage of rice.
    Numajiri Y; Yoshida S; Hayashi T; Uga Y
    Ann Bot; 2024 Jun; ():. PubMed ID: 38908006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shaping the root system architecture in plants for adaptation to drought stress.
    Ranjan A; Sinha R; Singla-Pareek SL; Pareek A; Singh AK
    Physiol Plant; 2022 Mar; 174(2):e13651. PubMed ID: 35174506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.