These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
312 related articles for article (PubMed ID: 35265205)
1. Multi-modal molecular imaging maps the correlation between tumor microenvironments and nanomedicine distribution. Strittmatter N; Moss JI; Race AM; Sutton D; Canales JR; Ling S; Wong E; Wilson J; Smith A; Howes C; Bunch J; Barry ST; Goodwin RJA; Ashford MB Theranostics; 2022; 12(5):2162-2174. PubMed ID: 35265205 [TBL] [Abstract][Full Text] [Related]
2. High-resolution 3D visualization of nanomedicine distribution in tumors. Moss JI; Barjat H; Emmas SA; Strittmatter N; Maynard J; Goodwin RJA; Storm G; Lammers T; Puri S; Ashford MB; Barry ST Theranostics; 2020; 10(2):880-897. PubMed ID: 31903157 [TBL] [Abstract][Full Text] [Related]
3. Spatial heterogeneity of nanomedicine investigated by multiscale imaging of the drug, the nanoparticle and the tumour environment. de Maar JS; Sofias AM; Porta Siegel T; Vreeken RJ; Moonen C; Bos C; Deckers R Theranostics; 2020; 10(4):1884-1909. PubMed ID: 32042343 [TBL] [Abstract][Full Text] [Related]
4. Combining Nanomedicine and Immunotherapy. Shi Y; Lammers T Acc Chem Res; 2019 Jun; 52(6):1543-1554. PubMed ID: 31120725 [TBL] [Abstract][Full Text] [Related]
5. Using imaging modalities to predict nanoparticle distribution and treatment efficacy in solid tumors: The growing role of ultrasound. Cooley MB; Wegierak D; Exner AA Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2024; 16(2):e1957. PubMed ID: 38558290 [TBL] [Abstract][Full Text] [Related]
6. Visualization of the distribution of nanoparticle-formulated AZD2811 in mouse tumor model using matrix-assisted laser desorption ionization mass spectrometry imaging. Ryu S; Ohuchi M; Yagishita S; Shimoi T; Yonemori K; Tamura K; Fujiwara Y; Hamada A Sci Rep; 2020 Sep; 10(1):15535. PubMed ID: 32968211 [TBL] [Abstract][Full Text] [Related]
7. Nanomedicines Targeting the Tumor Microenvironment. Tong R; Langer R Cancer J; 2015; 21(4):314-21. PubMed ID: 26222084 [TBL] [Abstract][Full Text] [Related]
8. Molecular imaging in nanomedicine - A developmental tool and a clinical necessity. Dearling JLJ; Packard AB J Control Release; 2017 Sep; 261():23-30. PubMed ID: 28624600 [TBL] [Abstract][Full Text] [Related]
9. Quantitative imaging of intracellular nanoparticle exposure enables prediction of nanotherapeutic efficacy. Yin Q; Pan A; Chen B; Wang Z; Tang M; Yan Y; Wang Y; Xia H; Chen W; Du H; Chen M; Fu C; Wang Y; Yuan X; Lu Z; Zhang Q; Wang Y Nat Commun; 2021 Apr; 12(1):2385. PubMed ID: 33888701 [TBL] [Abstract][Full Text] [Related]
10. DePEGylation strategies to increase cancer nanomedicine efficacy. Kong L; Campbell F; Kros A Nanoscale Horiz; 2019 Mar; 4(2):378-387. PubMed ID: 32254090 [TBL] [Abstract][Full Text] [Related]
11. Radiation effects on the tumor microenvironment: Implications for nanomedicine delivery. Stapleton S; Jaffray D; Milosevic M Adv Drug Deliv Rev; 2017 Jan; 109():119-130. PubMed ID: 27262923 [TBL] [Abstract][Full Text] [Related]
12. Tumor-Targeting Glycol Chitosan Nanoparticles for Cancer Heterogeneity. Ryu JH; Yoon HY; Sun IC; Kwon IC; Kim K Adv Mater; 2020 Dec; 32(51):e2002197. PubMed ID: 33051905 [TBL] [Abstract][Full Text] [Related]
13. Optimization of the tumor microenvironment and nanomedicine properties simultaneously to improve tumor therapy. Zhang B; Shi W; Jiang T; Wang L; Mei H; Lu H; Hu Y; Pang Z Oncotarget; 2016 Sep; 7(38):62607-62618. PubMed ID: 27566585 [TBL] [Abstract][Full Text] [Related]
14. Overcoming obstacles in the tumor microenvironment: Recent advancements in nanoparticle delivery for cancer theranostics. Overchuk M; Zheng G Biomaterials; 2018 Feb; 156():217-237. PubMed ID: 29207323 [TBL] [Abstract][Full Text] [Related]
15. Exploring the tumor microenvironment with nanoparticles. Miao L; Huang L Cancer Treat Res; 2015; 166():193-226. PubMed ID: 25895870 [TBL] [Abstract][Full Text] [Related]
16. Improved Targeting of Cancers with Nanotherapeutics. Foster C; Watson A; Kaplinsky J; Kamaly N Methods Mol Biol; 2017; 1530():13-37. PubMed ID: 28150194 [TBL] [Abstract][Full Text] [Related]
17. Overcoming tumor microenvironment obstacles: Current approaches for boosting nanodrug delivery. Wang X; Zhang H; Chen X; Wu C; Ding K; Sun G; Luo Y; Xiang D Acta Biomater; 2023 Aug; 166():42-68. PubMed ID: 37257574 [TBL] [Abstract][Full Text] [Related]
18. Reappraisal of anticancer nanomedicine design criteria in three types of preclinical cancer models for better clinical translation. Luan X; Yuan H; Song Y; Hu H; Wen B; He M; Zhang H; Li Y; Li F; Shu P; Burnett JP; Truchan N; Palmisano M; Pai MP; Zhou S; Gao W; Sun D Biomaterials; 2021 Aug; 275():120910. PubMed ID: 34144373 [TBL] [Abstract][Full Text] [Related]
19. Barrier permeation and improved nanomedicine delivery in tumor microenvironments. Liu J; Zhang J; Gao Y; Jiang Y; Guan Z; Xie Y; Hu J; Chen J Cancer Lett; 2023 May; 562():216166. PubMed ID: 37028698 [TBL] [Abstract][Full Text] [Related]
20. Mathematical modeling of the heterogeneous distributions of nanomedicines in solid tumors. He H; Liu C; Liu Y; Liu X; Wu Y; Fan J; Zhao L; Cao Y Eur J Pharm Biopharm; 2019 Sep; 142():153-164. PubMed ID: 31226367 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]