These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
312 related articles for article (PubMed ID: 35265205)
21. Tumor-Acidity-Cleavable Maleic Acid Amide (TACMAA): A Powerful Tool for Designing Smart Nanoparticles To Overcome Delivery Barriers in Cancer Nanomedicine. Du JZ; Li HJ; Wang J Acc Chem Res; 2018 Nov; 51(11):2848-2856. PubMed ID: 30346728 [TBL] [Abstract][Full Text] [Related]
22. Factors Influencing the Delivery Efficiency of Cancer Nanomedicines. Ullah R; Wazir J; Khan FU; Diallo MT; Ihsan AU; Mikrani R; Aquib M; Zhou X AAPS PharmSciTech; 2020 May; 21(4):132. PubMed ID: 32409932 [TBL] [Abstract][Full Text] [Related]
23. Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle. Miller MA; Gadde S; Pfirschke C; Engblom C; Sprachman MM; Kohler RH; Yang KS; Laughney AM; Wojtkiewicz G; Kamaly N; Bhonagiri S; Pittet MJ; Farokhzad OC; Weissleder R Sci Transl Med; 2015 Nov; 7(314):314ra183. PubMed ID: 26582898 [TBL] [Abstract][Full Text] [Related]
24. Tumor-targeted nanomedicines for cancer theranostics. Arranja AG; Pathak V; Lammers T; Shi Y Pharmacol Res; 2017 Jan; 115():87-95. PubMed ID: 27865762 [TBL] [Abstract][Full Text] [Related]
25. Designing Stimuli-Responsive Upconversion Nanoparticles that Exploit the Tumor Microenvironment. Ovais M; Mukherjee S; Pramanik A; Das D; Mukherjee A; Raza A; Chen C Adv Mater; 2020 Jun; 32(22):e2000055. PubMed ID: 32227413 [TBL] [Abstract][Full Text] [Related]
27. Drug delivery to solid tumors: the predictive value of the multicellular tumor spheroid model for nanomedicine screening. Millard M; Yakavets I; Zorin V; Kulmukhamedova A; Marchal S; Bezdetnaya L Int J Nanomedicine; 2017; 12():7993-8007. PubMed ID: 29184400 [TBL] [Abstract][Full Text] [Related]
28. Role of integrated cancer nanomedicine in overcoming drug resistance. Iyer AK; Singh A; Ganta S; Amiji MM Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1784-802. PubMed ID: 23880506 [TBL] [Abstract][Full Text] [Related]
29. Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance. Shapira A; Livney YD; Broxterman HJ; Assaraf YG Drug Resist Updat; 2011 Jun; 14(3):150-63. PubMed ID: 21330184 [TBL] [Abstract][Full Text] [Related]
30. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine? Danhier F J Control Release; 2016 Dec; 244(Pt A):108-121. PubMed ID: 27871992 [TBL] [Abstract][Full Text] [Related]
31. Image-driven pharmacokinetics: nanomedicine concentration across space and time. Brill DA; MacKay JA Nanomedicine (Lond); 2015; 10(18):2861-79. PubMed ID: 26370694 [TBL] [Abstract][Full Text] [Related]
32. Effects of tumor microenvironments on targeted delivery of glycol chitosan nanoparticles. Yhee JY; Jeon S; Yoon HY; Shim MK; Ko H; Min J; Na JH; Chang H; Han H; Kim JH; Suh M; Lee H; Park JH; Kim K; Kwon IC J Control Release; 2017 Dec; 267():223-231. PubMed ID: 28917532 [TBL] [Abstract][Full Text] [Related]
33. Targeting tumor microenvironment with PEG-based amphiphilic nanoparticles to overcome chemoresistance. Chen S; Yang K; Tuguntaev RG; Mozhi A; Zhang J; Wang PC; Liang XJ Nanomedicine; 2016 Feb; 12(2):269-86. PubMed ID: 26707818 [TBL] [Abstract][Full Text] [Related]
34. Efficacy-shaping nanomedicine by loading Calcium Peroxide into Tumor Microenvironment-responsive Nanoparticles for the Antitumor Therapy of Prostate Cancer. Wu D; Zhu ZQ; Tang HX; Shi ZE; Kang J; Liu Q; Qi J Theranostics; 2020; 10(21):9808-9829. PubMed ID: 32863961 [No Abstract] [Full Text] [Related]
35. Physical oncology: New targets for nanomedicine. Nicolas-Boluda A; Silva AKA; Fournel S; Gazeau F Biomaterials; 2018 Jan; 150():87-99. PubMed ID: 29035739 [TBL] [Abstract][Full Text] [Related]
37. Impact of surface grafting density of PEG macromolecules on dually fluorescent silica nanoparticles used for the in vivo imaging of subcutaneous tumors. Adumeau L; Genevois C; Roudier L; Schatz C; Couillaud F; Mornet S Biochim Biophys Acta Gen Subj; 2017 Jun; 1861(6):1587-1596. PubMed ID: 28179102 [TBL] [Abstract][Full Text] [Related]
38. Insights into Active Targeting of Nanoparticles in Drug Delivery: Advances in Clinical Studies and Design Considerations for Cancer Nanomedicine. Pearce AK; O'Reilly RK Bioconjug Chem; 2019 Sep; 30(9):2300-2311. PubMed ID: 31441642 [TBL] [Abstract][Full Text] [Related]
39. Rational nanocarrier design towards clinical translation of cancer nanotherapy. Guo D; Ji X; Luo J Biomed Mater; 2021 Mar; 16(3):. PubMed ID: 33540386 [TBL] [Abstract][Full Text] [Related]
40. Targeting cancer cells in the tumor microenvironment: opportunities and challenges in combinatorial nanomedicine. Linton SS; Sherwood SG; Drews KC; Kester M Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2016; 8(2):208-22. PubMed ID: 26153136 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]