These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 35265217)

  • 81. Improved detection and recognition of glycoproteins using fluorescent polymers with a molecular imprint based on glycopeptides.
    Li J; Yang Y; Zhu A; Li L; Liu X; Xie X
    Mikrochim Acta; 2021 Nov; 188(12):439. PubMed ID: 34845528
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Post-imprinting and In-Cavity Functionalization.
    Takeuchi T; Sunayama H; Takano E; Kitayama Y
    Adv Biochem Eng Biotechnol; 2015; 150():95-106. PubMed ID: 25796621
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Progress of Cancer Nanotechnology as Diagnostics, Therapeutics, and Theranostics Nanomedicine: Preclinical Promise and Translational Challenges.
    Alshehri S; Imam SS; Rizwanullah M; Akhter S; Mahdi W; Kazi M; Ahmad J
    Pharmaceutics; 2020 Dec; 13(1):. PubMed ID: 33374391
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Fluorescent monomers: "bricks" that make a molecularly imprinted polymer "bright".
    Wan W; Wagner S; Rurack K
    Anal Bioanal Chem; 2016 Mar; 408(7):1753-71. PubMed ID: 26613794
    [TBL] [Abstract][Full Text] [Related]  

  • 85. A brief review of coarse-grained and other computational studies of molecularly imprinted polymers.
    Levi L; Raim V; Srebnik S
    J Mol Recognit; 2011; 24(6):883-91. PubMed ID: 22038796
    [TBL] [Abstract][Full Text] [Related]  

  • 86. A facile and general approach for preparation of glycoprotein-imprinted magnetic nanoparticles with synergistic selectivity.
    Hao Y; Gao R; Liu D; He G; Tang Y; Guo Z
    Talanta; 2016 Jun; 153():211-20. PubMed ID: 27130111
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Recent progress, challenges and trends in trace determination of drug analysis using molecularly imprinted solid-phase microextraction technology.
    Ansari S; Karimi M
    Talanta; 2017 Mar; 164():612-625. PubMed ID: 28107981
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Molecularly imprinted polymers for bioanalytical sample preparation.
    Gama MR; Bottoli CB
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Feb; 1043():107-121. PubMed ID: 27825628
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Surface imprinted core-shell nanorod for selective extraction of glycoprotein.
    Guo Z; Sun Y; Zhang L; Ding Q; Chen W; Yu H; Liu Q; Fu M
    J Colloid Interface Sci; 2022 Jun; 615():597-605. PubMed ID: 35158191
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Preparation of molecularly imprinted polymers on hemin-graphene surface for recognition of high molecular weight protein.
    Wang X; Huang K; Zhang H; Zeng L; Zhou Y; Jing T
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110141. PubMed ID: 31546407
    [TBL] [Abstract][Full Text] [Related]  

  • 91. H5N1 Virus Plastic Antibody Based on Molecularly Imprinted Polymers.
    Sangma C; Lieberzeit PA; Sukjee W
    Methods Mol Biol; 2017; 1575():381-388. PubMed ID: 28255894
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Synthesis of molecularly imprinted polymers for extraction of fluoroquinolones in environmental, food and biological samples.
    Madikizela LM; Nomngongo PN; Pakade VE
    J Pharm Biomed Anal; 2022 Jan; 208():114447. PubMed ID: 34740088
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Nanomaterials innovation as an enabler for effective cancer interventions.
    Russell LM; Liu CH; Grodzinski P
    Biomaterials; 2020 Feb; 242():119926. PubMed ID: 32169771
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Protein-imprinted particles for coronavirus capture from solution.
    Senehi NL; Ykema MR; Sun R; Verduzco R; Stadler LB; Tao YJ; Alvarez PJJ
    J Sep Sci; 2022 Dec; 45(23):4318-4326. PubMed ID: 36168868
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Antibody theranostics in precision medicine.
    Wu Q; Yang S; Liu J; Jiang D; Wei W
    Med; 2023 Feb; 4(2):69-74. PubMed ID: 36724783
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Molecular imprinting as a tool for determining molecular markers: a lung cancer case.
    Piletska E; Magumba K; Joseph L; Garcia Cruz A; Norman R; Singh R; Tabasso AFS; Jones DJL; Macip S; Piletsky S
    RSC Adv; 2022 Jun; 12(28):17747-17754. PubMed ID: 35765329
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Ultrafast Subcellular Biolabeling and Bioresponsive Real-Time Monitoring for Targeting Cancer Theranostics.
    Huang K; Wang Y; Qin Z; Liu H; Zhang H; Wang J; Li X; Liu X; Jiang H; Wang X
    ACS Sens; 2023 Sep; 8(9):3563-3573. PubMed ID: 37697622
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Nanoheterostructures (NHS) and Their Applications in Nanomedicine: Focusing on In Vivo Studies.
    Quarta A; Piccirillo C; Mandriota G; Di Corato R
    Materials (Basel); 2019 Jan; 12(1):. PubMed ID: 30609839
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Snapshot imprinting as a tool for surface mapping and identification of novel biomarkers of senescent cells.
    Piletska E; Thompson D; Jones R; Cruz AG; Poblocka M; Canfarotta F; Norman R; Macip S; Jones DJL; Piletsky S
    Nanoscale Adv; 2022 Dec; 4(24):5304-5311. PubMed ID: 36540121
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Recent advances of nanocrystals in cancer theranostics.
    Yenurkar D; Nayak M; Mukherjee S
    Nanoscale Adv; 2023 Aug; 5(16):4018-4040. PubMed ID: 37560418
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.