BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 35265362)

  • 21. Endobronchial photodynamic therapy for lung cancer.
    Loewen GM; Pandey R; Bellnier D; Henderson B; Dougherty T
    Lasers Surg Med; 2006 Jun; 38(5):364-70. PubMed ID: 16788932
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulating Near-Infrared Photodynamic Properties of Semiconducting Polymer Nanotheranostics for Optimized Cancer Therapy.
    Zhu H; Fang Y; Miao Q; Qi X; Ding D; Chen P; Pu K
    ACS Nano; 2017 Sep; 11(9):8998-9009. PubMed ID: 28841279
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cytokine-induced killer cells-assisted tumor-targeting delivery of Her-2 monoclonal antibody-conjugated gold nanostars with NIR photosensitizer for enhanced therapy of cancer.
    Liang S; Sun M; Lu Y; Shi S; Yang Y; Lin Y; Feng C; Liu J; Dong C
    J Mater Chem B; 2020 Sep; 8(36):8368-8382. PubMed ID: 32966532
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Measurement of Cyanine Dye Photobleaching in Photosensitizer Cyanine Dye Conjugates Could Help in Optimizing Light Dosimetry for Improved Photodynamic Therapy of Cancer.
    James NS; Cheruku RR; Missert JR; Sunar U; Pandey RK
    Molecules; 2018 Jul; 23(8):. PubMed ID: 30042350
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tumor microenvironment-activated nanosystems with selenophenol substituted BODIPYs as photosensitizers for photodynamic therapy.
    Gao W; Li M; Xu G; Wang R; Shi B; Zhu T; Gao J; Gu X; Shi P; Zhao C
    Bioorg Med Chem Lett; 2020 Jan; 30(2):126854. PubMed ID: 31859157
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photodynamic therapy for central-type early-stage lung cancer.
    Ikeda N; Usuda J; Maehara S
    Gen Thorac Cardiovasc Surg; 2020 Jul; 68(7):679-683. PubMed ID: 31749069
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Core-shell polymeric nanoparticles co-loaded with photosensitizer and organic dye for photodynamic therapy guided by fluorescence imaging in near and short-wave infrared spectral regions.
    Chepurna OM; Yakovliev A; Ziniuk R; Nikolaeva OA; Levchenko SM; Xu H; Losytskyy MY; Bricks JL; Slominskii YL; Vretik LO; Qu J; Ohulchanskyy TY
    J Nanobiotechnology; 2020 Jan; 18(1):19. PubMed ID: 31973717
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aptamer-Targeted Photodynamic Platforms for Tumor Therapy.
    Yan J; Gao T; Lu Z; Yin J; Zhang Y; Pei R
    ACS Appl Mater Interfaces; 2021 Jun; 13(24):27749-27773. PubMed ID: 34110790
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly Efficient Photosensitizers with Far-Red/Near-Infrared Aggregation-Induced Emission for In Vitro and In Vivo Cancer Theranostics.
    Wang D; Lee MMS; Shan G; Kwok RTK; Lam JWY; Su H; Cai Y; Tang BZ
    Adv Mater; 2018 Sep; 30(39):e1802105. PubMed ID: 30133835
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ENDOBRONCHIAL PHOTODYNAMIC THERAPY UNDER FLUORESCENCE CONTROL: PHOTODYNAMIC THERANOSTICS.
    Akopov AL; Rusanov AA; Papayan GV; Kazakov NV; Gerasin AV
    Vestn Khir Im I I Grek; 2016; 175(5):26-31. PubMed ID: 30422443
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photodynamic therapy using mono-L-aspartyl chlorin e6 for rabbit experimental hepatoma.
    Nakamura J; Kajiwara H
    J Hepatobiliary Pancreat Surg; 1999; 6(3):312-9. PubMed ID: 10526068
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New aspects of photodynamic therapy for central type early stage lung cancer.
    Ikeda N; Usuda J; Kato H; Ishizumi T; Ichinose S; Otani K; Honda H; Furukawa K; Okunaka T; Tsutsui H
    Lasers Surg Med; 2011 Sep; 43(7):749-54. PubMed ID: 22057502
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthetic infrared nano-photosensitizers with hierarchical zoom-in target-delivery functionalities for precision photodynamic therapy.
    Xia J; Qian M; Yao Q; Meng Z; Cui H; Zhang L; Li Y; Wu S; Wang J; Chen Q; Peng X
    J Control Release; 2021 Jun; 334():263-274. PubMed ID: 33930477
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The investigation of unique water-soluble heptamethine cyanine dye for use as NIR photosensitizer in photodynamic therapy of cancer cells.
    Yang X; Bai J; Qian Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 228():117702. PubMed ID: 31748160
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Novel D-A-D Photosensitizer for Efficient NIR Imaging and Photodynamic Therapy.
    Liu Y; Chen M; Zhao Y; Lv S; Zheng D; Liu D; Song F
    Chembiochem; 2021 Jun; 22(12):2161-2167. PubMed ID: 33871143
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gold Nanoclusters-Based NIR-II Photosensitizers with Catalase-like Activity for Boosted Photodynamic Therapy.
    Dan Q; Yuan Z; Zheng S; Ma H; Luo W; Zhang L; Su N; Hu D; Sheng Z; Li Y
    Pharmaceutics; 2022 Aug; 14(8):. PubMed ID: 36015272
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Red-emitting upconverting nanoparticles for photodynamic therapy in cancer cells under near-infrared excitation.
    Tian G; Ren W; Yan L; Jian S; Gu Z; Zhou L; Jin S; Yin W; Li S; Zhao Y
    Small; 2013 Jun; 9(11):1929-38, 1928. PubMed ID: 23239556
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ROS-responsive activatable photosensitizing agent for imaging and photodynamic therapy of activated macrophages.
    Kim H; Kim Y; Kim IH; Kim K; Choi Y
    Theranostics; 2013; 4(1):1-11. PubMed ID: 24396511
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Near-Infrared Organic Fluorescent Nanoparticles for Long-term Monitoring and Photodynamic Therapy of Cancer.
    Xia Q; Chen Z; Zhou Y; Liu R
    Nanotheranostics; 2019; 3(2):156-165. PubMed ID: 31008024
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The photodynamic activities of dimethyl 13
    Gao YH; Lovreković V; Kussayeva A; Chen DY; Margetić D; Chen ZL
    Eur J Med Chem; 2019 Sep; 177():144-152. PubMed ID: 31132530
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.