These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 35265956)
1. Nonlinear dilatational rheology of different protein aggregates at the oil-water interface. Li J; Zhang B; Ye J; Sun F; Liu Y; Yang N; Nishinari K Soft Matter; 2022 Mar; 18(12):2383-2393. PubMed ID: 35265956 [TBL] [Abstract][Full Text] [Related]
2. Interfacial behaviour of β-lactoglobulin aggregates at the oil-water interface studied using particle tracking and dilatational rheology. Yang N; Ye J; Li J; Hu B; Leheny RL; Nishinari K; Fang Y Soft Matter; 2021 Mar; 17(10):2973-2984. PubMed ID: 33595572 [TBL] [Abstract][Full Text] [Related]
3. Nonlinear Surface Dilatational Rheology and Foaming Behavior of Protein and Protein Fibrillar Aggregates in the Presence of Natural Surfactant. Wan Z; Yang X; Sagis LM Langmuir; 2016 Apr; 32(15):3679-90. PubMed ID: 27043221 [TBL] [Abstract][Full Text] [Related]
4. Droplet surface properties and rheology of concentrated oil in water emulsions stabilized by heat-modified beta-lactoglobulin B. Knudsen JC; Øgendal LH; Skibsted LH Langmuir; 2008 Mar; 24(6):2603-10. PubMed ID: 18288877 [TBL] [Abstract][Full Text] [Related]
5. Interfacial dilatational elasticity and viscosity of beta-lactoglobulin at air-water interface using pulsating bubble tensiometry. Wang Z; Narsimhan G Langmuir; 2005 May; 21(10):4482-9. PubMed ID: 16032864 [TBL] [Abstract][Full Text] [Related]
6. Effect of Oil Hydrophobicity on the Adsorption and Rheology of β-Lactoglobulin at Oil-Water Interfaces. Bergfreund J; Bertsch P; Kuster S; Fischer P Langmuir; 2018 Apr; 34(16):4929-4936. PubMed ID: 29616820 [TBL] [Abstract][Full Text] [Related]
7. Simultaneous control of pH and ionic strength during interfacial rheology of β-lactoglobulin fibrils adsorbed at liquid/liquid Interfaces. Rühs PA; Scheuble N; Windhab EJ; Mezzenga R; Fischer P Langmuir; 2012 Aug; 28(34):12536-43. PubMed ID: 22857147 [TBL] [Abstract][Full Text] [Related]
8. Comparative study on foaming and emulsifying properties of different beta-lactoglobulin aggregates. Hu J; Yang J; Xu Y; Zhang K; Nishinari K; Phillips GO; Fang Y Food Funct; 2019 Sep; 10(9):5922-5930. PubMed ID: 31469143 [TBL] [Abstract][Full Text] [Related]
9. Adsorption and dilatational rheology of heat-treated soy protein at the oil-water interface: relationship to structural properties. Wang JM; Xia N; Yang XQ; Yin SW; Qi JR; He XT; Yuan DB; Wang LJ J Agric Food Chem; 2012 Mar; 60(12):3302-10. PubMed ID: 22372478 [TBL] [Abstract][Full Text] [Related]
10. Viscoelastic characterization of the crosslinking of β-lactoglobulin on emulsion drops via microcapsule compression and interfacial dilational and shear rheology. Biviano MD; Böni LJ; Berry JD; Fischer P; Dagastine RR J Colloid Interface Sci; 2021 Feb; 583():404-413. PubMed ID: 33069963 [TBL] [Abstract][Full Text] [Related]
11. Contribution of Long Fibrils and Peptides to Surface and Foaming Behavior of Soy Protein Fibril System. Wan Z; Yang X; Sagis LM Langmuir; 2016 Aug; 32(32):8092-101. PubMed ID: 27452662 [TBL] [Abstract][Full Text] [Related]
12. Cross linking and rheological characterization of adsorbed protein layers at the oil-water interface. Romoscanu AI; Mezzenga R Langmuir; 2005 Oct; 21(21):9689-97. PubMed ID: 16207053 [TBL] [Abstract][Full Text] [Related]
13. Interfacial activity and interfacial shear rheology of native β-lactoglobulin monomers and their heat-induced fibers. Jung JM; Gunes DZ; Mezzenga R Langmuir; 2010 Oct; 26(19):15366-75. PubMed ID: 20825171 [TBL] [Abstract][Full Text] [Related]
14. Effect of gastric conditions on β-lactoglobulin interfacial networks: influence of the oil phase on protein structure. Maldonado-Valderrama J; Miller R; Fainerman VB; Wilde PJ; Morris VJ Langmuir; 2010 Oct; 26(20):15901-8. PubMed ID: 20857971 [TBL] [Abstract][Full Text] [Related]
15. Effect of acidification and heating on the rheological properties of oil-water interfaces with adsorbed milk proteins. Mellema M; Isenbart JG J Dairy Sci; 2004 Sep; 87(9):2769-78. PubMed ID: 15375034 [TBL] [Abstract][Full Text] [Related]
16. Interfacial assembly and rheology of multi-responsive glycyrrhizic acid at liquid interfaces. Cai J; Wu J; Yu X; Wan Z; Yang X Soft Matter; 2024 Feb; 20(6):1173-1185. PubMed ID: 38164656 [TBL] [Abstract][Full Text] [Related]
17. Conformational state and charge determine the interfacial stabilization process of beta-lactoglobulin at preoccupied interfaces. Schestkowa H; Wollborn T; Westphal A; Maria Wagemans A; Fritsching U; Drusch S J Colloid Interface Sci; 2019 Feb; 536():300-309. PubMed ID: 30380430 [TBL] [Abstract][Full Text] [Related]
18. Interfacial shear rheology of β-lactoglobulin-Bovine submaxillary mucin layers adsorbed at air/water interface. Çelebioğlu HY; Kmiecik-Palczewska J; Lee S; Chronakis IS Int J Biol Macromol; 2017 Sep; 102():857-867. PubMed ID: 28435056 [TBL] [Abstract][Full Text] [Related]
19. Structural-rheological characteristics of Chaplin E peptide at the air/water interface; a comparison with β-lactoglobulin and β-casein. Dokouhaki M; Prime EL; Qiao GG; Kasapis S; Day L; Gras SL Int J Biol Macromol; 2020 Feb; 144():742-750. PubMed ID: 31837361 [TBL] [Abstract][Full Text] [Related]
20. Dynamic interfacial adsorption and emulsifying performance of self-assembled coconut protein and fucoidan mixtures. Zhu Q; Wang H; Li Y; Yu H; Pei J; Chen H; Chen W Int J Biol Macromol; 2024 Sep; 276(Pt 2):133928. PubMed ID: 39038582 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]