These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 35266368)
1. GMEPS: a fast and efficient likelihood approach for genome-wide mediation analysis under extreme phenotype sequencing. Liyanage JSS; Estepp JH; Srivastava K; Li Y; Mori M; Kang G Stat Appl Genet Mol Biol; 2022 Mar; 21(1):. PubMed ID: 35266368 [TBL] [Abstract][Full Text] [Related]
2. STEPS: an efficient prospective likelihood approach to genetic association analyses of secondary traits in extreme phenotype sequencing. Bi W; Li Y; Smeltzer MP; Gao G; Zhao S; Kang G Biostatistics; 2020 Jan; 21(1):33-49. PubMed ID: 30007308 [TBL] [Abstract][Full Text] [Related]
3. Using extreme phenotype sampling to identify the rare causal variants of quantitative traits in association studies. Li D; Lewinger JP; Gauderman WJ; Murcray CE; Conti D Genet Epidemiol; 2011 Dec; 35(8):790-9. PubMed ID: 21922541 [TBL] [Abstract][Full Text] [Related]
4. EPS-LASSO: test for high-dimensional regression under extreme phenotype sampling of continuous traits. Xu C; Fang J; Shen H; Wang YP; Deng HW Bioinformatics; 2018 Jun; 34(12):1996-2003. PubMed ID: 29385408 [TBL] [Abstract][Full Text] [Related]
5. A mediation analysis framework based on variance component to remove genetic confounding effect. Dong Z; Zhao H; DeWan AT J Hum Genet; 2024 Jul; 69(7):301-309. PubMed ID: 38528049 [TBL] [Abstract][Full Text] [Related]
6. Generalized multi-SNP mediation intersection-union test. Zhong W; Darville T; Zheng X; Fine J; Li Y Biometrics; 2022 Mar; 78(1):364-375. PubMed ID: 33316078 [TBL] [Abstract][Full Text] [Related]
7. Detecting rare variant effects using extreme phenotype sampling in sequencing association studies. Barnett IJ; Lee S; Lin X Genet Epidemiol; 2013 Feb; 37(2):142-51. PubMed ID: 23184518 [TBL] [Abstract][Full Text] [Related]
8. A flexible copula-based approach for the analysis of secondary phenotypes in ascertained samples. Tounkara F; Lefebvre G; Greenwood C; Oualkacha K Stat Med; 2020 Feb; 39(5):517-543. PubMed ID: 31868965 [TBL] [Abstract][Full Text] [Related]
9. Comparison of mixed model based approaches for correcting for population substructure with application to extreme phenotype sampling. Onifade M; Roy-Gagnon MH; Parent MÉ; Burkett KM BMC Genomics; 2022 Feb; 23(1):98. PubMed ID: 35120458 [TBL] [Abstract][Full Text] [Related]
10. Two-stage extreme phenotype sequencing design for discovering and testing common and rare genetic variants: efficiency and power. Kang G; Lin D; Hakonarson H; Chen J Hum Hered; 2012; 73(3):139-47. PubMed ID: 22678112 [TBL] [Abstract][Full Text] [Related]
11. Extreme-value sampling design is cost-beneficial only with a valid statistical approach for exposure-secondary outcome association analyses. Zhang H; Bi W; Cui Y; Chen H; Chen J; Zhao Y; Kang G Stat Methods Med Res; 2020 Feb; 29(2):466-480. PubMed ID: 30945605 [TBL] [Abstract][Full Text] [Related]
12. A flexible likelihood framework for detecting associations with secondary phenotypes in genetic studies using selected samples: application to sequence data. Liu DJ; Leal SM Eur J Hum Genet; 2012 Apr; 20(4):449-56. PubMed ID: 22166943 [TBL] [Abstract][Full Text] [Related]
13. A Cautionary Note on the Effects of Population Stratification Under an Extreme Phenotype Sampling Design. Panarella M; Burkett KM Front Genet; 2019; 10():398. PubMed ID: 31130982 [TBL] [Abstract][Full Text] [Related]
14. Power in the phenotypic extremes: a simulation study of power in discovery and replication of rare variants. Guey LT; Kravic J; Melander O; Burtt NP; Laramie JM; Lyssenko V; Jonsson A; Lindholm E; Tuomi T; Isomaa B; Nilsson P; Almgren P; Kathiresan S; Groop L; Seymour AB; Altshuler D; Voight BF Genet Epidemiol; 2011 May; 35(4):236-46. PubMed ID: 21308769 [TBL] [Abstract][Full Text] [Related]
15. Rare variant association test with multiple phenotypes. Lee S; Won S; Kim YJ; Kim Y; ; Kim BJ; Park T Genet Epidemiol; 2017 Apr; 41(3):198-209. PubMed ID: 28039885 [TBL] [Abstract][Full Text] [Related]
16. Robust analysis of secondary phenotypes in case-control genetic association studies. Xing C; M McCarthy J; Dupuis J; Adrienne Cupples L; B Meigs J; Lin X; S Allen A Stat Med; 2016 Oct; 35(23):4226-37. PubMed ID: 27241694 [TBL] [Abstract][Full Text] [Related]
17. Extreme-phenotype genome-wide association study (XP-GWAS): a method for identifying trait-associated variants by sequencing pools of individuals selected from a diversity panel. Yang J; Jiang H; Yeh CT; Yu J; Jeddeloh JA; Nettleton D; Schnable PS Plant J; 2015 Nov; 84(3):587-96. PubMed ID: 26386250 [TBL] [Abstract][Full Text] [Related]
18. Trans-ethnic meta-analysis of rare variants in sequencing association studies. Shi J; Boehnke M; Lee S Biostatistics; 2021 Oct; 22(4):706-722. PubMed ID: 31883325 [TBL] [Abstract][Full Text] [Related]
19. Optimum designs for next-generation sequencing to discover rare variants for common complex disease. Shi G; Rao DC Genet Epidemiol; 2011 Sep; 35(6):572-9. PubMed ID: 21618604 [TBL] [Abstract][Full Text] [Related]
20. iGWAS: Integrative Genome-Wide Association Studies of Genetic and Genomic Data for Disease Susceptibility Using Mediation Analysis. Huang YT; Liang L; Moffatt MF; Cookson WO; Lin X Genet Epidemiol; 2015 Jul; 39(5):347-56. PubMed ID: 25997986 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]