BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 35266387)

  • 1. Interfacial Reduction Nucleation of Noble Metal Nanodots on Redox-Active Metal-Organic Frameworks for High-Efficiency Electrocatalytic Conversion of Nitrate to Ammonia.
    Jiang M; Su J; Song X; Zhang P; Zhu M; Qin L; Tie Z; Zuo JL; Jin Z
    Nano Lett; 2022 Mar; 22(6):2529-2537. PubMed ID: 35266387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge Transport in Zirconium-Based Metal-Organic Frameworks.
    Kung CW; Goswami S; Hod I; Wang TC; Duan J; Farha OK; Hupp JT
    Acc Chem Res; 2020 Jun; 53(6):1187-1195. PubMed ID: 32401008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zirconium metal-organic frameworks incorporating tetrathiafulvalene linkers: robust and redox-active matrices for
    Su J; Yuan S; Wang T; Lollar CT; Zuo JL; Zhang J; Zhou HC
    Chem Sci; 2020 Jan; 11(7):1918-1925. PubMed ID: 34123285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoengineering Metal-Organic Frameworks and Derivatives for Electrosynthesis of Ammonia.
    Feng D; Zhou L; White TJ; Cheetham AK; Ma T; Wei F
    Nanomicro Lett; 2023 Aug; 15(1):203. PubMed ID: 37615796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Efficient Electrochemical Nitrate Reduction to Ammonia in Strong Acid Conditions with Fe
    Lv Y; Ke SW; Gu Y; Tian B; Tang L; Ran P; Zhao Y; Ma J; Zuo JL; Ding M
    Angew Chem Int Ed Engl; 2023 Jul; 62(27):e202305246. PubMed ID: 37158129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constructing Redox-Responsive Metal-Organic Framework Nanocarriers for Anticancer Drug Delivery.
    Lei B; Wang M; Jiang Z; Qi W; Su R; He Z
    ACS Appl Mater Interfaces; 2018 May; 10(19):16698-16706. PubMed ID: 29692177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel honeycomb-like metal organic frameworks as multifunction electrodes for nitrate degradation: A computational study.
    Yang L; Feng S; Zhu W
    J Hazard Mater; 2023 Mar; 445():130534. PubMed ID: 36493649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defective UiO-66-NH
    He X; Yin F; Yi X; Yang T; Chen B; Wu X; Guo S; Li G; Li Z
    ACS Appl Mater Interfaces; 2022 Jun; ():. PubMed ID: 35666991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrocatalytic Metal-Organic Frameworks for Energy Applications.
    Downes CA; Marinescu SC
    ChemSusChem; 2017 Nov; 10(22):4374-4392. PubMed ID: 28968485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the electronic and ionic transport in topologically distinct redox-active metal-organic frameworks in aqueous electrolytes.
    Shen CH; Chen YH; Wang YC; Chang TE; Chen YL; Kung CW
    Phys Chem Chem Phys; 2022 May; 24(17):9855-9865. PubMed ID: 35348567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic Bond-Directed Synthesis of Stable Mesoporous Metal-Organic Frameworks under Room Temperature.
    Li Y; Su J; Zhao Y; Feng L; Gao L; Xu X; Yin Y; Liu Y; Xiao P; Yuan L; Qin JS; Wang Y; Yuan S; Zheng H; Zuo JL
    J Am Chem Soc; 2023 May; 145(18):10227-10235. PubMed ID: 37074687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iodine Capture Using Zr-Based Metal-Organic Frameworks (Zr-MOFs): Adsorption Performance and Mechanism.
    Chen P; He X; Pang M; Dong X; Zhao S; Zhang W
    ACS Appl Mater Interfaces; 2020 May; 12(18):20429-20439. PubMed ID: 32255599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site Isolation in Metal-Organic Frameworks Enables Novel Transition Metal Catalysis.
    Drake T; Ji P; Lin W
    Acc Chem Res; 2018 Sep; 51(9):2129-2138. PubMed ID: 30129753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unsaturated p-Metal-Based Metal-Organic Frameworks for Selective Nitrogen Reduction under Ambient Conditions.
    Fu Y; Li K; Batmunkh M; Yu H; Donne S; Jia B; Ma T
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):44830-44839. PubMed ID: 32909741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Filling Mesopores of Conductive Metal-Organic Frameworks with Cu Clusters for Selective Nitrate Reduction to Ammonia.
    Zhu X; Huang H; Zhang H; Zhang Y; Shi P; Qu K; Cheng SB; Wang AL; Lu Q
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):32176-32182. PubMed ID: 35802788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amorphous Chromium Oxide with Hollow Morphology for Nitrogen Electrochemical Reduction under Ambient Conditions.
    Pan T; Wang L; Shen Y; Zhang X; Luo C; Li H; Wu P; Zhang H; Zhang W; Savilov SV; Huo F
    ACS Appl Mater Interfaces; 2022 Mar; 14(12):14474-14481. PubMed ID: 35290027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the Performance of Metal-Organic Frameworks for Modulation of Nitric Oxide Release from S-Nitrosothiols.
    Ling P; Gao X; Zang X; Sun X; Gao F
    Chem Asian J; 2022 Apr; 17(7):e202101358. PubMed ID: 35178879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visible-light-induced photocatalytic CO
    Du Y; Jie G; Jia H; Liu J; Wu J; Fu Y; Zhang F; Zhu W; Fan M
    J Environ Sci (China); 2023 Oct; 132():22-30. PubMed ID: 37336607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Process of metal-organic framework (MOF)/covalent-organic framework (COF) hybrids-based derivatives and their applications on energy transfer and storage.
    Cui B; Fu G
    Nanoscale; 2022 Feb; 14(5):1679-1699. PubMed ID: 35048101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional oriented growth of Zn-MOF-on-Zr-MOF architecture: A highly sensitive and selective platform for detecting cancer markers.
    Zhou N; Su F; Guo C; He L; Jia Z; Wang M; Jia Q; Zhang Z; Lu S
    Biosens Bioelectron; 2019 Jan; 123():51-58. PubMed ID: 30308421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.