These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
359 related articles for article (PubMed ID: 35266387)
21. Process of metal-organic framework (MOF)/covalent-organic framework (COF) hybrids-based derivatives and their applications on energy transfer and storage. Cui B; Fu G Nanoscale; 2022 Feb; 14(5):1679-1699. PubMed ID: 35048101 [TBL] [Abstract][Full Text] [Related]
22. Two-dimensional oriented growth of Zn-MOF-on-Zr-MOF architecture: A highly sensitive and selective platform for detecting cancer markers. Zhou N; Su F; Guo C; He L; Jia Z; Wang M; Jia Q; Zhang Z; Lu S Biosens Bioelectron; 2019 Jan; 123():51-58. PubMed ID: 30308421 [TBL] [Abstract][Full Text] [Related]
23. Boosting Catalytic Performance of MOF-808(Zr) by Direct Generation of Rich Defective Zr Nodes via a Solvent-Free Approach. Ye G; Wan L; Zhang Q; Liu H; Zhou J; Wu L; Zeng X; Wang H; Chen X; Wang J Inorg Chem; 2023 Mar; 62(10):4248-4259. PubMed ID: 36857420 [TBL] [Abstract][Full Text] [Related]
24. 2D copper-iron bimetallic metal-organic frameworks for reduction of nitrate with boosted efficiency and ammonia selectivity. Ma Q; Xue Y; Zhang C; Chen Y; Teng W; Zhang H; Fan J J Environ Sci (China); 2025 Mar; 149():374-385. PubMed ID: 39181650 [TBL] [Abstract][Full Text] [Related]
25. Active-Site Modulation in an Fe-Porphyrin-Based Metal-Organic Framework through Ligand Axial Coordination: Accelerating Electrocatalysis and Charge-Transport Kinetics. Liberman I; Shimoni R; Ifraemov R; Rozenberg I; Singh C; Hod I J Am Chem Soc; 2020 Jan; 142(4):1933-1940. PubMed ID: 31910614 [TBL] [Abstract][Full Text] [Related]
26. Formation of Interfacial Cu-[O Jing P; Liu P; Hu M; Xu X; Liu B; Zhang J Small; 2022 Jun; 18(23):e2201200. PubMed ID: 35532198 [TBL] [Abstract][Full Text] [Related]
27. Role of Zr Nam D; Kim Y; Kim M; Nam J; Kim S; Jin E; Lee CY; Choe W Inorg Chem; 2021 Jul; 60(14):10249-10256. PubMed ID: 34037384 [TBL] [Abstract][Full Text] [Related]
28. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes. Zhu YP; Guo C; Zheng Y; Qiao SZ Acc Chem Res; 2017 Apr; 50(4):915-923. PubMed ID: 28205437 [TBL] [Abstract][Full Text] [Related]
29. High-performance catalytic reduction of 4-nitrophenol to 4-aminophenol using M-BDC (M = Ag, Co, Cr, Mn, and Zr) metal-organic frameworks. Ehsani A; Nejatbakhsh S; Soodmand AM; Farshchi ME; Aghdasinia H Environ Res; 2023 Jun; 227():115736. PubMed ID: 36963712 [TBL] [Abstract][Full Text] [Related]
30. Investigating the Influence of Hexanuclear Clusters in Isostructural Metal-Organic Frameworks on Toxic Gas Adsorption. Kirlikovali KO; Chen Z; Wang X; Mian MR; Alayoglu S; Islamoglu T; Farha OK ACS Appl Mater Interfaces; 2022 Jan; 14(2):3048-3056. PubMed ID: 34995051 [TBL] [Abstract][Full Text] [Related]
31. Recent Advances in Noble-Metal-Free Catalysts for Electrocatalytic Synthesis of Ammonia under Ambient Conditions. Xiang Z; Li L; Wang Y; Song Y Chem Asian J; 2020 Jun; 15(12):1791-1807. PubMed ID: 32351021 [TBL] [Abstract][Full Text] [Related]
32. Zr-Based Metal-Organic Frameworks with Intrinsic Peroxidase-Like Activity for Ultradeep Oxidative Desulfurization: Mechanism of H Zheng HQ; Zeng YN; Chen J; Lin RG; Zhuang WE; Cao R; Lin ZJ Inorg Chem; 2019 May; 58(10):6983-6992. PubMed ID: 31041865 [TBL] [Abstract][Full Text] [Related]
33. In(III) Metal-Organic Framework Incorporated with Enzyme-Mimicking Nickel Bis(dithiolene) Ligand for Highly Selective CO Zhou Y; Liu S; Gu Y; Wen GH; Ma J; Zuo JL; Ding M J Am Chem Soc; 2021 Sep; 143(35):14071-14076. PubMed ID: 34450022 [TBL] [Abstract][Full Text] [Related]
34. Lamellar Metal Organic Framework-Derived Fe-N-C Non-Noble Electrocatalysts with Bimodal Porosity for Efficient Oxygen Reduction. Li Z; Sun H; Wei L; Jiang WJ; Wu M; Hu JS ACS Appl Mater Interfaces; 2017 Feb; 9(6):5272-5278. PubMed ID: 28098977 [TBL] [Abstract][Full Text] [Related]
36. Construction of Highly Proton-Conductive Zr(IV)-Based Metal-Organic Frameworks From Pyrrolo-pyrrole-Based Linkers with a Rhombic Shape. Li Y; Li X; Jia S; Zhang C; Luo Y; Lin Z; Zhao Y; Huang W Inorg Chem; 2021 Aug; 60(16):12129-12135. PubMed ID: 34310114 [TBL] [Abstract][Full Text] [Related]
37. Rational incorporation of defects within metal-organic frameworks generates highly active electrocatalytic sites. Heidary N; Chartrand D; Guiet A; Kornienko N Chem Sci; 2021 Apr; 12(21):7324-7333. PubMed ID: 34163822 [TBL] [Abstract][Full Text] [Related]
38. Charge Transfer Metal-Organic Framework Containing Redox-Active TTF/NDI Units for Highly Efficient Near-Infrared Photothermal Conversion. Yan T; Li YY; Su J; Wang HY; Zuo JL Chemistry; 2021 Aug; 27(43):11050-11055. PubMed ID: 33988893 [TBL] [Abstract][Full Text] [Related]
39. Atomically Dispersed Metal Sites in MOF-Based Materials for Electrocatalytic and Photocatalytic Energy Conversion. Liang Z; Qu C; Xia D; Zou R; Xu Q Angew Chem Int Ed Engl; 2018 Jul; 57(31):9604-9633. PubMed ID: 29460497 [TBL] [Abstract][Full Text] [Related]
40. Topology and porosity control of metal-organic frameworks through linker functionalization. Lyu J; Zhang X; Otake KI; Wang X; Li P; Li Z; Chen Z; Zhang Y; Wasson MC; Yang Y; Bai P; Guo X; Islamoglu T; Farha OK Chem Sci; 2019 Jan; 10(4):1186-1192. PubMed ID: 30774917 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]