These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35266643)

  • 1. Balancing conduction velocity error in cardiac electrophysiology using a modified quadrature approach.
    Woodworth LA; Cansız B; Kaliske M
    Int J Numer Method Biomed Eng; 2022 May; 38(5):e3589. PubMed ID: 35266643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A numerical study on the effects of spatial and temporal discretization in cardiac electrophysiology.
    Woodworth LA; Cansız B; Kaliske M
    Int J Numer Method Biomed Eng; 2021 May; 37(5):e3443. PubMed ID: 33522111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical quadrature and operator splitting in finite element methods for cardiac electrophysiology.
    Krishnamoorthi S; Sarkar M; Klug WS
    Int J Numer Method Biomed Eng; 2013 Nov; 29(11):1243-66. PubMed ID: 23873868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Space-discretization error analysis and stabilization schemes for conduction velocity in cardiac electrophysiology.
    Pezzuto S; Hake J; Sundnes J
    Int J Numer Method Biomed Eng; 2016 Oct; 32(10):. PubMed ID: 26685879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporating inductances in tissue-scale models of cardiac electrophysiology.
    Rossi S; Griffith BE
    Chaos; 2017 Sep; 27(9):093926. PubMed ID: 28964127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An adaptive hybridizable discontinuous Galerkin approach for cardiac electrophysiology.
    Hoermann JM; Bertoglio C; Kronbichler M; Pfaller MR; Chabiniok R; Wall WA
    Int J Numer Method Biomed Eng; 2018 May; 34(5):e2959. PubMed ID: 29316340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semi-implicit Non-conforming Finite-Element Schemes for Cardiac Electrophysiology: A Framework for Mesh-Coarsening Heart Simulations.
    Jilberto J; Hurtado DE
    Front Physiol; 2018; 9():1513. PubMed ID: 30425648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational modelling of cardiac electrophysiology: explanation of the variability of results from different numerical solvers.
    Pathmanathan P; Bernabeu MO; Niederer SA; Gavaghan DJ; Kay D
    Int J Numer Method Biomed Eng; 2012 Aug; 28(8):890-903. PubMed ID: 25099569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An inner-outer subcycling algorithm for parallel cardiac electrophysiology simulations.
    Laudenschlager S; Cai XC
    Int J Numer Method Biomed Eng; 2023 Mar; 39(3):e3677. PubMed ID: 36573938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling hemodynamics in intracranial aneurysms: Comparing accuracy of CFD solvers based on finite element and finite volume schemes.
    Botti L; Paliwal N; Conti P; Antiga L; Meng H
    Int J Numer Method Biomed Eng; 2018 Sep; 34(9):e3111. PubMed ID: 29858530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards accurate numerical method for monodomain models using a realistic heart geometry.
    Belhamadia Y; Fortin A; Bourgault Y
    Math Biosci; 2009 Aug; 220(2):89-101. PubMed ID: 19447119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A macro finite-element formulation for cardiac electrophysiology simulations using hybrid unstructured grids.
    Rocha BM; Kickinger F; Prassl AJ; Haase G; Vigmond EJ; dos Santos RW; Zaglmayr S; Plank G
    IEEE Trans Biomed Eng; 2011 Apr; 58(4):1055-65. PubMed ID: 20699206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulations of complex and microscopic models of cardiac electrophysiology powered by multi-GPU platforms.
    Gouvêa de Barros B; Sachetto Oliveira R; Meira W; Lobosco M; Weber dos Santos R
    Comput Math Methods Med; 2012; 2012():824569. PubMed ID: 23227109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A generalized finite difference method for modeling cardiac electrical activation on arbitrary, irregular computational meshes.
    Trew ML; Smaill BH; Bullivant DP; Hunter PJ; Pullan AJ
    Math Biosci; 2005 Dec; 198(2):169-89. PubMed ID: 16140344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A space-fractional bidomain framework for cardiac electrophysiology: 1D alternans dynamics.
    Cusimano N; Gerardo-Giorda L; Gizzi A
    Chaos; 2021 Jul; 31(7):073123. PubMed ID: 34340362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New insights on the cardiac safety factor: Unraveling the relationship between conduction velocity and robustness of propagation.
    Boyle PM; Franceschi WH; Constantin M; Hawks C; Desplantez T; Trayanova NA; Vigmond EJ
    J Mol Cell Cardiol; 2019 Mar; 128():117-128. PubMed ID: 30677394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A numerical method for cardiac mechanoelectric simulations.
    Pathmanathan P; Whiteley JP
    Ann Biomed Eng; 2009 May; 37(5):860-73. PubMed ID: 19263223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive macro finite elements for the numerical solution of monodomain equations in cardiac electrophysiology.
    Heidenreich EA; Ferrero JM; Doblaré M; Rodríguez JF
    Ann Biomed Eng; 2010 Jul; 38(7):2331-45. PubMed ID: 20238165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatically generated, anatomically accurate meshes for cardiac electrophysiology problems.
    Prassl AJ; Kickinger F; Ahammer H; Grau V; Schneider JE; Hofer E; Vigmond EJ; Trayanova NA; Plank G
    IEEE Trans Biomed Eng; 2009 May; 56(5):1318-30. PubMed ID: 19203877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.