These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 35266647)
1. Macroscale Robust Superlubricity on Metallic NbB Wang J; Liu C; Miao K; Zhang K; Zheng W; Chen C Adv Sci (Weinh); 2022 May; 9(13):e2103815. PubMed ID: 35266647 [TBL] [Abstract][Full Text] [Related]
2. Genesis of Superlow Friction in Strengthening Si-DLC/PLC Nanostructured Multilayer Films for Robust Superlubricity at Ultrahigh Contact Stress. Deng W; Wang Y; Yu Q; Chen X; Huang P; Yu X; Qi W; Li X; Zhang C; Luo J ACS Appl Mater Interfaces; 2022 Nov; 14(45):51564-51578. PubMed ID: 36322023 [TBL] [Abstract][Full Text] [Related]
3. Macroscale Superlubricity on Engineering Steel in the Presence of Black Phosphorus. Tang G; Wu Z; Su F; Wang H; Xu X; Li Q; Ma G; Chu PK Nano Lett; 2021 Jun; 21(12):5308-5315. PubMed ID: 34076433 [TBL] [Abstract][Full Text] [Related]
4. 3D-Printed Topological MoS Zhao Y; Mei H; Chang P; Yang Y; Huang W; Liu Y; Cheng L; Zhang L ACS Appl Mater Interfaces; 2021 Jul; 13(29):34984-34995. PubMed ID: 34278775 [TBL] [Abstract][Full Text] [Related]
5. Toward Robust Macroscale Superlubricity on Engineering Steel Substrate. Li P; Ju P; Ji L; Li H; Liu X; Chen L; Zhou H; Chen J Adv Mater; 2020 Sep; 32(36):e2002039. PubMed ID: 32715515 [TBL] [Abstract][Full Text] [Related]
6. Macroscale Superlubricity with Ultralow Wear and Ultrashort Running-In Period (∼1 s) through Phytic Acid-Based Complex Green Liquid Lubricants. Du C; Yu T; Zhang L; Deng H; Shen R; Li X; Feng Y; Wang D ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36755437 [TBL] [Abstract][Full Text] [Related]
7. Superlubricity and Antiwear Properties of In Situ-Formed Ionic Liquids at Ceramic Interfaces Induced by Tribochemical Reactions. Ge X; Li J; Zhang C; Liu Y; Luo J ACS Appl Mater Interfaces; 2019 Feb; 11(6):6568-6574. PubMed ID: 30657308 [TBL] [Abstract][Full Text] [Related]
8. Approaches for Achieving Superlubricity in Two-Dimensional Materials. Berman D; Erdemir A; Sumant AV ACS Nano; 2018 Mar; 12(3):2122-2137. PubMed ID: 29522673 [TBL] [Abstract][Full Text] [Related]
9. Macroscale Superlubricity Enabled by Graphene-Coated Surfaces. Zhang Z; Du Y; Huang S; Meng F; Chen L; Xie W; Chang K; Zhang C; Lu Y; Lin CT; Li S; Parkin IP; Guo D Adv Sci (Weinh); 2020 Feb; 7(4):1903239. PubMed ID: 32099768 [TBL] [Abstract][Full Text] [Related]
10. Macroscale Superlubricity Enabled by Hydrated Alkali Metal Ions. Han T; Zhang C; Luo J Langmuir; 2018 Sep; 34(38):11281-11291. PubMed ID: 30175911 [TBL] [Abstract][Full Text] [Related]
11. Shear-Induced Interfacial Structural Conversion Triggers Macroscale Superlubricity: From Black Phosphorus Nanoflakes to Phosphorus Oxide. Liu Y; Li J; Li J; Yi S; Ge X; Zhang X; Luo J ACS Appl Mater Interfaces; 2021 Jul; 13(27):31947-31956. PubMed ID: 34190525 [TBL] [Abstract][Full Text] [Related]
12. A dual-responsive microemulsion with macroscale superlubricity and largely switchable friction. Chen S; Sun H; Liu J; Wang J; Lu H; Hao J; Xu L; Liu W Mater Horiz; 2024 Apr; 11(7):1668-1678. PubMed ID: 38476075 [TBL] [Abstract][Full Text] [Related]
13. Macroscale Superlubricity and Polymorphism of Long-Chain Reddyhoff T; Ewen JP; Deshpande P; Frogley MD; Welch MD; Montgomery W ACS Appl Mater Interfaces; 2021 Feb; 13(7):9239-9251. PubMed ID: 33565870 [TBL] [Abstract][Full Text] [Related]
14. Macroscale Superlubricity Enabled by the Synergy Effect of Graphene-Oxide Nanoflakes and Ethanediol. Ge X; Li J; Luo R; Zhang C; Luo J ACS Appl Mater Interfaces; 2018 Nov; 10(47):40863-40870. PubMed ID: 30388363 [TBL] [Abstract][Full Text] [Related]
15. A New Pathway for Superlubricity in a Multilayered MoS Yin X; Jin J; Chen X; Ma T; Zhang C Nano Lett; 2021 Dec; 21(24):10165-10171. PubMed ID: 34889617 [TBL] [Abstract][Full Text] [Related]
16. Lithium Citrate Triggered Macroscopic Superlubricity with Near-Zero Wear on an Amorphous Carbon Film. Sun S; Yi S; Li J; Ding Z; Song W; Luo J ACS Appl Mater Interfaces; 2023 Apr; 15(15):19705-19714. PubMed ID: 37018161 [TBL] [Abstract][Full Text] [Related]
17. Critical length limiting superlow friction. Ma M; Benassi A; Vanossi A; Urbakh M Phys Rev Lett; 2015 Feb; 114(5):055501. PubMed ID: 25699452 [TBL] [Abstract][Full Text] [Related]
18. AFM Studies on Liquid Superlubricity between Silica Surfaces Achieved with Surfactant Micelles. Li J; Zhang C; Cheng P; Chen X; Wang W; Luo J Langmuir; 2016 Jun; 32(22):5593-9. PubMed ID: 27192019 [TBL] [Abstract][Full Text] [Related]
19. The pivotal role of oxygen in establishing superlow friction by inducing the in situ formation of a robust MoS Yu G; Qian Q; Li D; Zhang Z; Ren K; Gong Z; Zhang J J Colloid Interface Sci; 2021 Jul; 594():824-835. PubMed ID: 33794404 [TBL] [Abstract][Full Text] [Related]
20. Poly(vinylphosphonic acid) (PVPA) on titanium alloy acting as effective cartilage-like superlubricity coatings. Zhang C; Liu Y; Wen S; Wang S ACS Appl Mater Interfaces; 2014 Oct; 6(20):17571-8. PubMed ID: 25244595 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]