These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

36 related articles for article (PubMed ID: 35266701)

  • 1. A Hydrogel-coated Wood Membrane with Intelligent Oil Pollution Detection for Emulsion Separation.
    Chen D; Bao M; Ge H; Chen X; Ma W; Wang Z; Li Y
    Small; 2024 Jun; ():e2401719. PubMed ID: 38874065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Durable Nano-Flower Structured Foam Coupled with Electrically-Driven in Situ Aeration Enable High-Flux Oil/Water Emulsion Separation with Dynamic Antifouling Ability.
    Lu X; Chen C; Lin H; Zeng Q; Du J; Han L; Teng J; Yu W; Xu Y; Shen L
    Small; 2024 Apr; ():e2400205. PubMed ID: 38676331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of Tailored Membranes with Special Surface Wettability Features for Highly Efficient Crude Oil-in-Water Emulsion Separation.
    Baig U; Waheed A; Usman J; Aljundi IH
    ACS Appl Mater Interfaces; 2024 Jul; 16(26):33504-33516. PubMed ID: 38904348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequential Demulsification through the Hydrophobic-Hydrophilic-Hydrophobic Filtration Layer toward High-Performing Oil Recovery.
    Li X; Zhang G; Liu H; Lan H; Qu J
    Environ Sci Technol; 2023 Aug; 57(32):12083-12093. PubMed ID: 37530558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eco-friendly, highly interpenetrated and slightly swollen pHEMA hydrogel foam for durable underwater superoleophobicity and emulsion separation.
    Zeng J; Zhu Y; Tian Y; Tang K; Duan M; Wang Y; Lin L; He N
    Chemosphere; 2024 Sep; 363():142960. PubMed ID: 39079588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrophobic Carbon Nitride Nanolayer Enables High-Flux Oil/Water Separation with Photocatalytic Antifouling Ability.
    He M; Wu S; Xiong S; Zhang L; Lai C; Peng X; Zhong S; Lu ZH; Chen S; Zhang WG; Tan C; Peng G; Liu C
    Nano Lett; 2023 Nov; 23(22):10563-10570. PubMed ID: 37926962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boosting Demulsification and Antifouling Capacity of Membranes via an Enhanced Piezoelectric Effect for Sustaining Emulsion Separation.
    Yan Y; Zhou P; Zhou Y; Zhang W; Pi P; Qian Y; Wen X; Jiang L
    J Am Chem Soc; 2024 May; 146(19):13306-13316. PubMed ID: 38690945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical coalescence of oil-in-water droplets in microchannels of TiO
    Gu Y; Chen W; Chen L; Liu M; Zhao K; Wang Z; Yu H
    Water Res; 2024 May; 255():121550. PubMed ID: 38579590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separation performance of hydrocyclone oil removal device influenced by oil droplet trajectory and oil drop characteristics.
    Yang M; Jiang R; Wu X; Yue Y
    Sci Prog; 2023; 106(2):368504231181769. PubMed ID: 37306208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A facile method for separating fine water droplets dispersed in oil through a pre-wetted mesh membrane.
    Park J; Kang S; Park E; Lee D; Park J; Kim D; Choi SQ; Kim K
    iScience; 2024 Apr; 27(4):109556. PubMed ID: 38617558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling droplet size distribution in inline electrostatic coalescers for improved crude oil processing.
    Kooti G; Dabir B; Taherdangkoo R; Butscher C
    Sci Rep; 2023 Nov; 13(1):20209. PubMed ID: 37980362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in membrane technologies applied in oil-water separation.
    Huang J; Ran X; Sun L; Bi H; Wu X
    Discov Nano; 2024 Apr; 19(1):66. PubMed ID: 38619656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compound Droplet Generation by a Hybrid Microfluidic Device.
    Li Z; Guo C; Jian Z
    Langmuir; 2024 Jul; ():. PubMed ID: 38976874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Floating electrode optoelectronic tweezers: Light-driven dielectrophoretic droplet manipulation in electrically insulating oil medium.
    Park S; Pan C; Wu TH; Kloss C; Kalim S; Callahan CE; Teitell M; Chiou EP
    Appl Phys Lett; 2008 Apr; 92(15):151101-1511013. PubMed ID: 19479046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic Design of a Flow-Through Titanium Electrode-Based Device with Strong Oil Droplet Rejection Property for Superior Oil-in-Water Emulsion Separation Performance.
    Li X; Lan H; Zhang G; Tan X; Liu H
    Environ Sci Technol; 2022 Apr; 56(7):4151-4161. PubMed ID: 35266701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyvinylidene Fluoride Membrane Via Vapour Induced Phase Separation for Oil/Water Emulsion Filtration.
    Nawi NIM; Sait NR; Bilad MR; Shamsuddin N; Jaafar J; Nordin NAH; Narkkun T; Faungnawakij K; Mohshim DF
    Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33572754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Demulsification with simultaneous water purification by coupling filtration and enhanced oil droplet coalescence at anode interface in an electrochemical reactor.
    Li X; Zhang G; Hu C; Lan H; Liu H
    J Environ Sci (China); 2024 Dec; 146():118-126. PubMed ID: 38969440
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.